
AD-R174745 TRAJECTORY AND FORCE CONTROL OF A DIRECT DRIVE ARKCU) 1/2
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB C H AN SEP 86 AI-TR-912

UNCLASSIFIED N88e14-85-K-ei24 F/G 9/5 N

EnhIMENSENESSE
*uuIuuuuuuuuu



111161111 i __

1. 25 4

4ROCOPY RESOLUTIO4 TEST CHART
NTAM AtIUREAiU OF STANDARD-1963-A



Technical Report 912

L--Traj ectory andForce Control

of a

Direct Drive

Arm
.-

Chae Hun An

MIT Artificial Intelligence Laboratory

ta_ --:.. ... . CTE=

T c.i cv doument has been approved V

p bi. r'.2,se and sale; its. NOV 25198 6 0
Si, unlimited.

t 6 11 25 067l

", "."' 0"; .'''-- Y-'.2 "? " .2"j"'*"" : ,""V,"".'.'.2. -' "2 """ ; "".i,.'""" -' " , - :- , .. -,, - . .



UNCLASSIFIED
SECUaI" CL&SSs , "TI O i Or TwI|S WAGE (*%on Data Entred)

PAGE READ INSTRUCTIONS
REPORT DOCUMENTATION BEFORE COMPLETING FORM

REPORT NUMOER 1. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMIER

AI-TR-912

4 TITLE (and Subtile) S. TYPE OF REPORT & PERmOD COVERED

Trajectory and Force Control of a Technical Report

Direct Drive Arm 9. PERFORMING ORG. REPORT NUMBER

7. AUTNOn(s) . CONTRACT OR GRANT Ity"11"s )

Chae H. An N00014-80-C-- .O ,

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK

Artificial Intelligence Laboratory AREA A WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency Sept. 1986
1400 Wilson Blvd. Is. NUMBER OF PAGES

Arlington, VA 22209 160
14 MONITORING AGENCY NAME & AOORESS(I dlilermst #em Centolling Olfie.) IS. SECURITY CLASS. (e oft; tpe')

Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 1I6. OSI VIC ATiON/DOWNGRADING

I. OISTRIUTION STATEMENT (of this RepeI)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (of ife eobrel enlaed to Block "f. It AlEtoem bem Ropw)

Distribution is unlimited.

I. SUPPLEMENTARY NOTES

None

19. KIEY WORDS (Centims anecs ade it *5 aooeayev7ed lantiD by 64041h mea)

Force Control, Direct Drive Arm

Trajectory Control, Link Estimation

Load Estimation

20. ABSTRACT (C.nilas-- reverse side it ,.,-...i.. .101 td if? AW v1.0e -. M)

see back

DD FR, 1473 EDITION OF INOV 6 ISOUSOLETE UNCLASSIFIED
S/N 0!02-OI4-6101 1 SECURITY CLASSIFICATION OF THIS PAGE (Wten b tere

..- ~~ ~ ~ ~ ',~~-.-' % . . . * %* ' .



/

20. /

Abstract. Using the MIT Serial Link Direct Drive Arm as the main experimental
device, various issues in trajectory and force control of manipulators were studied
in this thesis. Since accurate modelling is important for any controller, issues of
estimating the dynamic model of a manipulator and its load were addressed first.
Practical and effective algorithms were developed from the Newton-Euler equations
to estimate the inertial parameters of manipulator rigid-body loads and links. Load
estimation was implemented both on a PUMA 600 robot and on the MIT Serial
Link Direct Drive Arm. With the link estimation algorithm, the inertial param-
eters of the direct drive arm were obtained. For both load and link estimation
results, the estimated parameters are good models of the actual system for control
purposes since torques and forces can be predicted accurately from these estimated
parameters. __)

'Mhe estimated model of the direct drive arm was then used to evaluate trajec-
tory following performance by feedforward and computed torque control algorithms.
The experimental evaluations showed that the dynamic compensation can greatly
improve trajectory following accuracy.

Various stability issues of force control were studied next. It was determined
that there are two types of instability in force control. Dynamic instability, present
in all of the previous force control algorithms discussed in this thesis, is caused by
the interaction of a manipulator with a stiff environment. Kinematic instability is
present only in the hybrid control algorithm of Raibert and Craig, and is caused
by the interaction of the inertia matrix with the Jacobian inverse coordinate trans-
formation in the feedback path. Several methods were suggested and demonstrated
experimentally to solve these stability problems. The results of the stability anal-
yses were then incorporated in implementing a stable force/position controller on
the direct drive arm by the modified resolved acceleration method using both joint
torque and wrist force sensor feedbacks.
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Chapter 1

Introduction

The control of robot manipulators has become an important subject of study due

to growing interests and uses of robot manipulators. Unfortunately, very few of the

proposed control algorithms have ever been implemented on an actual manipulator,

and it is not clear how good or practical these algorithms really are. This lack of

experimental results is mainly due to the lack of a high quality manipulator that

can benefit from sophisticated control algorithms. The motivation of this thesis

is to evaluate some of these control algorithms (both trajectory and force control)

using a high quality direct drive arm and to understand some of the problems in

robot control that researchers have observed in the past. Then, some new methods

of control are developed to overcome those problems.

1.1 Direct Drive Arm

A typical industrial manipulator such as the PUMA (Unimation, Inc.) has small

actuators at the joints and utilizes very large gear ratios in order to be able to

exert enough torque to the links. This arrangement of actuation introduces a large

amount of undesirable nonlinearities such as friction and backlash at the joints. In

fact, for the PUMA 600 manipulator at the MIT Artificial Intelligence Laboratory,

it was measured that the friction terms account for as much as 50% of the motor

torques. Ironically, since these nonlinear effects are difficult to deal with, most of

the proposed control algorithms are based on the rigid body dynamic model of the
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robot, neglecting the non-ideal characteristics. Therefore, these algorithms cannot

be used on typical manipulators effectively. In fact, the effects of the rigid body

dynamics of the links are very small for these highly geared manipulators since

these effects are reduced by the square of the gear ratio. A typical gear ratio of

100 : 1 would then reduce the dynamic effects of the links by 10 - 4 . As a result, the

dynamics of a conventional robot are dominated by the motor inertias and the joint

frictions (Goor, 1985; Good, Sweet, and Strobel, 1985). This is the main reason

that the most common form of controller for these manipulators are the independent

joint PID controllers.

Conventional robots have other disadvantages. Because of their characteristics

mentioned above, they are in general slow, and cannot be used in high speed ap-

plications such as laser cutting (Youcef-Toumi, 1985). Also, they are essentially

positioning devices and are not suitable for controlling interaction forces at the

tip of the manipulator since the actuators with high gear ratios cannot be used to
.0.0 command torques effectively. Typically the best way to control these manipulators

is to implement tight position loops at the joints, thus making the actuators into

position sources.

Recently, however, several high quality direct drive arms have been developed in

order to overcome some of the performance limitations of the conventional robots

(Asada and Kanade, 1981; Asada, Kanade and Takeyama, 1983; Asada and Youcef-

Toumi, 1984; Curran and Mayer, 1985; Kuwahara, Ono, Nikaido, and Matsumoto,

1985) . Since the links are directly coupled to the motors, the backlash effects

are eliminated and the joint frictional effects are reduced immensely. Therefore,

the dynamics of these direct drive arms are modelled accurately by the rigid body

dynamics of the links. This characteristic makes these manipulators not only more

" suitable to test the recent control algorithms based on link dynamics, but also

makes it necessary to use such sophisticated control algorithms since the full coupled

dynamics of the links are reflected directly to the actuators.

Without the high gearing and the undesirable nonlinear effects at the joints,

the control of joint torques also becomes more feasible. Since the actuators can be

treated as torque sources, they are more suitable for controlling forces and torques
at the tip of the manipulator.

But, there are also some drawbacks with the direct drive arm trchnology. Since

there is no gearing to amplify the motor torques, the motors have to be large to

-..



be able to exert large torques. This makes the whole manipulator large and more

difficult to control. Also, since the motors have to exert large torques, large currents

flow through the windings, overheating the motors quickly. Another drawback is

that the manipulator dynamics will be sensitive to the changes in loads at the tip of

the manipulator, since the load inertial effects are fully reflected to the joints without

any reduction through the gears. Despite these drawbacks, the ability to model the

manipulator accurately by the ideal rigid body dynamics makes these manipulators

very attractive for control studies and for high performance applications.

The main experimental device used in this thesis is the MIT Serial Link Direct

Drive Arm (DDARM) (Fig. 1.1), developed by Haruhiko Asada while he was at

MIT. It is a three link manipulator with a three phase rare-earth permanent magnet

brushless DC motor placed at each joint. The serial link configuration of this

manipulator differentiates this direct drive arm from another direct drive arm at

MIT, which was also developed by Asada but has parallel linkages. The motor

charateristics of the DDARM are listed in Table 1.1 (Youcef-Toumi, 1985).

motor motor peak rotor max. current

dia. mass torque inertia (Amp)

(cm) (kg) (Nm) (kg-m2 ) # poles instantaneous continuous

Joint 1 35 20.39 660 0.181 30 50 15
Joints 2 & 3 25 16.5 230 0.0256 18 30 10

Table 1.1: Motor characterisitics for the Direct Drive Arm

1.2 Objectives

As mentioned in the first paragraph, a goal of this thesis is to study robot control

using the DDARM. The first step in any control design is the accurate modelling of

the plant to be controlled. In practice, especially with the availability of automatic

control design tools, this modelling step may occupy greater than 90% of the control

designer's efforts. Hence, for controlling a direct drive arm, accurate modelling

of the manipulator is important. Since the actuators are inherently parts of the

links for direct drive arms, separate modelling of the mechanical properties of the

actuators are not necessary. The electrical dynamics of the actuators are often

12



* Figure 1.1: MIT Serial Link Direct Drive Arm
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orders of magnitude faster than the inertial dynamics and it may not be necessary

to include them in the robot model.

Kinematic parameters are usually well known or can be calibrated using methods

developed by Whitney, Lozinski, and Rourke (1986) and others. However, the

inertial parameters, i.e. the mass, the location of center of mass, and the moments

of inertia of each rigid body link of a robot are usually not known even to the

manufacturers of the robots. Also, even if the links were modelled accurately, the

inertial parameters of the loads vary with different loads. Since a load is essentially

a part of the last link, the knowledge of the inertial parameters of manipulator

loads is also important for accurate control of manipulators. Therefore, one of

the objectives of this thesis is to develop a practical algorithm to estimate the

inertial parameters of links and loads accurately. The second objective is to use the

estimated parameters in the design of trajectory and force control algorithms for

the direct drive arm and evaluate experimental results using different controllers.
Between the area of trajectory control and the area of force control of manipu-

lators, the issues of force control are much less understood. As mentioned before,

conventional robots are not well suited for implementating force control algorithms

since they are essentially positioning devices. Therefore, previous implementations

seldom produced satisfactory results (Caine, 1985). In fact, researchers in the past

have experienced significant instability problems associated with force controllers

(Whitney, 1985). Therefore, another goal of this thesis is to understand some of

the stability and performance problems associated with force control, and suggest

and demonstrate some remedies to those problems using the direct drive arm.

As stressed several times already, the implementation aspects are important

parts of my thesis work since very few experimental results are available in the

field of robot control. Experiments are important not only because they can verify

the theory but also some practical problems and insights may be discovered during

implementations that may not have been obvious at first. This was true throughout

my thesis work.

1.3 Literature Survey

This section is brief since each chapter of this thesis, except for Chapters 1, 7, and

8, contains introduction section which includes the survey of previous works.

14



The direct drive arm technology has been pioneered in the U.S. by Haruhiko

Asada. His first version was developed at the Carnegie-Mellon University (Asada

and Kanade, 1981; Asada, Kanade, and Takeyama, 1983). At MIT, Asada, Youcef-

Toumi (1985), and Ro (Asada and Ro, 1985) developed the invariant inertia method

for designing direct drive arms.

Since the importance of modelling the manipulator accurately has been increas-

ingly apparent with the demand for high performance controller, several investiga-

tors have recently suggested various algorithms for estimating the kinematic and

the dynamic models. Whitney (1986) has presented the most comprehensive work

so far for calibrating the kinematic parameters using measurements with theodo-

lites. His work includes both theoretical and experimental results. Other works

on kinematic identification are by Wu (1983), Hayati (1983), Mooring (1983) , and

Sugimoto and Okada (1984).

Paul (1981), Coiffet (1983), Olsen and Bekey (1985), and Mukerjee and Ballard

(1985) have studied the rigid-body load identification problem, and Mayeda, Osuka,

and Kangawa (1984), Olsen and Bekey (1985), Mukerjee and Ballard (1985), New-

man and Khosla (1985) and Khalil, Gautier, and Kleinfinger (1986) have studied

the rigid-body link identification problem. Some of the works by the above authors

are similar to the algorithms presented in this thesis, but very few have been veri-

fied by implementation. In addition, Cannon and Schmitz (1984) and Book (1984)

among other researchers have considered modelling flexible modes of links.

There have been many control algorithms based on the rigid body dynamic

model of a manipulator. The computed torque control method for trajectory control

has been studied by various researchers (Paul, 1972; Markiewicz, 1973; Bejczy,

1974; Luh, Walker, and Paul,1980b, Gilbert and Ha, 1984). However, the actual

implementation of such controller has not been reported until very recently. The

only experimental result that has been published is by Khosla and Kanade (1986),

who at CMU also used a direct drive arm. The feedforward control for manipulators

was suggested by Liegeois, Fournier, and Aldon (1980), and Asada, Kanade, and

Takeyama (1983) reported some results of feedforward control implementation on

their direct drive arm.

In the study of force control, there has been much effort since the late 1970's.

The report by Whitney (1985) includes an extensive survey of force control for ma-

nipulators. Some of the studies have focused on passive compliance devices (Drake

15



and Simunovic, 1977). For active force control, there are mainly four continuous

feedback methods that have been proposed and implemented with various degree

of success by researchers. They include:

" damping control (Whitney, 1977),

" stiffness control (Salisbury, 1980),

" impedance control (Hogan, 1985a, 1985b, 1985c),

" hybrid force/position control (Raibert and Craig, 1981; Khatib, 1983; Khatib

and Burdick, 1986).

The above force control implementations generally had difficulty in dealing with

stiff environments. Recently, Whitney (1985), Roberts, Paul, and Hillberry (1985),
Wlassich (1986), and Eppinger and Seering (1986) have addressed stability problems

for force feedback algorithms using wrist force sensors. In some instances, the work

reported in this thesis is similar to their work, but includes more complete analyses,
verification by actual experiments, and some novel approaches in remedying the

stability problems.

There has been much discussion on the singularities of the Jacobian inverse often
used in force control algorithms (Whitney, 1972). But there has been no previous

work in considering the instabilities caused by the coordinate transformations at

places other than the kinematic singularity points. To the best of my knowledge,

the results reported in this thesis on the kinematic instabilities of some force control

methods are the first in this area.

1.4 Overview of the Thesis

In Chapter 2,1 the estimation algorithm for a load is presented along with exper-

imental results on the PUMA and the DDARM. The algorithm is based on the

reformulation of the Newton-Euler rigid body dynamics of a load such that the

resulting equations are linear in terms of the unknown inertial parameters. The

load identification algorithm is extended in Chapter 3 to identify all of the inertial
1 The work reported in Chapters 2, 3, and 4 results from joint effort with Chris Atkeson, John

Holerbach, and John Griffiths.
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parameters of the links of any manipulator whose torque or force at each joint can

be measured. The algorithm is implemented successfully to identify the link inertial

parameters of the DDARM. The estimated parameters are used in the feedforward

and the computed torque control algorithms and their performances are compared

in Chapter 4 against the performance of a simple PD controller.

Chapters 5 and 6 deal with the stability problems of force control. The dynamic

instabilities, observed in a force controlled manipulator in contact with a stiff en-

vironment, are studied in Chapter 5. Analytical results using a simple model of

a manipulator are presented and verified by experiments. Then, some methods of

solving the instability problems are suggested and demonstrated on the third link of
the DDARM. In Chapter 6, another type of instability, associated with some force

control methods, is studied. Three different force control methods are considered

and it is shown both by analyses and by experiments that the hybrid control method

of Raibert and Craig (1981) exhibit kinematically induced instabilities whereas the

other methods do not.

In Chapter 7, the results of the estimation, the trajectory control, and the

dynamic and kinematic instability analyses are combined in implementing a stable

force/position controller on the two joints of the DDARM. Finally, conclusions and

recommendation for future work are presented in Chapter 8.

7'
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Chapter 2

Estimation of Load Inertial
Parameters

2.1 Introduction

This chapter presents a method of estimating all of the inertial parameters of a rigid

body load using a wrist force/torque sensor: the mass, the moments of inertia, the

location of its center of mass, and the object's orientation relative to a force sensing

coordinate system. This procedure has three steps:

1. A Newton-Euler formulation for the rigid body load yields dynamics equations

linear in the unknown inertial parameters, when the moment of inertia tensor

is expressed about the wrist force sensing coordinate system origin.

2. These inertial parameters are then estimated using a least

squares estimation algorithm.

3. The location of the load's center of mass, its orientation, and its principal

moments of inertia can be recovered from the sensor referenced estimated

parameters.

In principle, there are no restrictions on the movements used to do this load iden-

tification, except that if accurate estinmation of all the parameters is desired the

This chapter is a revised version of (Atkeson, An, and Hollerbach, 1985b)
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motion must be sufficiently rich (i.e. occupy more than one orientation with re-

spect to gravity and contain angular accelerations in several different directions)

and sometimes special test movements must be used to get accurate estimates of

moment of inertia parameters.

There are several applications for this load identification procedure. The accu-

racy of path following and general control quality of manipulators moving external

loads can be improved by incorporating a model of the load into the controller,

as the effective inertial parameters of the last link of the manipulator change with

the load. The mass, the center of mass, and the moments of inertia constitute a

complete set of inertial parameters for an object; in most cases, these parameters

form a good description of the object, although they do not uniquely define it. The

object may be completely unknown at first and an inertial description of the object

may be generated as the robot picks up and moves the object. The robot may also

be used in a verification process, in which the desired specification of the object is

known and the manipulator examines the object to verify if it is within the toler-

ances. Recognition, finding the best match of a manipulated object to one among

a set of known objects, may also be desired. Finally, the estimated location of the

center of mass and the orientation of the principal axis can be used to verify that

the manipulator has grasped the object in the desired manner.

A key feature of the approach in this thesis is that it requires no special test

or identification movements and therefore can continuously interpret wrist force

and torque sensory data during any desired manipulation. Previous methods of

load identification were restricted in their application. Paul (1981) described two

methods of determining the mass of a load when the manipulator is at rest, one

requiring the knowledge of joint torques and the other forces and torques at the

wrist. The center of mass and the load moments of inertia were not identified.

Coiffet (1983) utilized joint torque sensing to estimate the mass and center of

mass of a load for a robot at rest. Moments of inertia were estimated with special

test motions, moving only one axis at a time or applying test torques. Because of

the intervening link masses and domination of inertia by the mass moments, joint

torque sensing is less accurate than wrist force-torque sensing.

Olsen and Bekey (1985) assumed full force-torque sensing at the wrist to identify

the load without special test motions. Mukerjee's approach (1984, 1985), which also

allows general motion during load identification, is similar to the approach taken in
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this chapter. Nevertheless, neither paper simulated or experimentally implemented

their procedures to verify the correctness of the equations or to determine the

accuracy of estimation in the presence of noise and imperfect measurements.

Khalil, Gautier, and Kleinfinger (1986) have suggested a method of identify-

ing the load inertial parameters using joint torque sensing as a part of their link

identification procedure. As mentioned before, joint torque sensing is less accu-
rate than wrist force-torque sensing. Also, they did not present any simulation or

experimental results.

The algorithm to be presented requires measurements of the force and torque

due to a load and measurements or estimates of the position, velocity, acceleration,

orientation, angular velocity, and angular acceleration of the force sensing coordi-

nate system. It can handle incomplete force and torque measurement by simply

eliminating the equations containing missing measurements. The necessary kine-

matic data can be obtained from the joint angles and, if available, the joint velocities

of the manipulator. Also, the inertial parameters of a robot hand can be identified
using this algorithm and then the predicted forces and torques due to the hand can

be subtracted from the sensed forces and torques, so that only the load is estimated.
This inertial parameter estimation algorithm was implemented using a PUMA

600 robot equipped with an RTI FS-B wrist force/torque sensor, and on the MIT

Serial Link Direct Drive Arm (DDARM) equipped with a Barry Wright Company

Astek FS6-120A-200 6-axis wrist force/torque sensor.

2.2 The Newton-Euler Approach To The Load

Identification Problem

2.2.1 Deriving The Parameter Equation

To derive equations for estimating the unknown inertial parameters, the co-

ordinate systems in Figure 2.1 are used to relate different coordinate frames and
vectors. 0 is an inertial or base coordinate system, which is fixed in space with

gravity pointing along the -z axis. P is the force reference coordinate system of a

wrist force/torque sensor rigidly attached to the load. Q represents the principal

axis of the rigid body load located at the center of mass. The x axis of Q is along
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Cb

P

* p: position vector from the origin of the base coordinate frame to the origin

of the wrist sensor coordinate frame.

q: position vector from the origin of the base coordinate frame to the center

of the mass of the load.

c: position vector from the origin of the wrist sensor coordinate frame to the
center of the mass of the load.

Figure 2.1: Coordinate Frames.
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the largest principal moment of inertia, and the z axis along the smallest. Q is

-~ unique up to a reflection in bodies with 3 distinct principal moments of inertia. In

the derivation that follows all vectors are initially expressed in the base coordinate

-, system 0.
The mass, moments of inertia, location of the center of mass, and orientation of

the body (a rotation QPR from the principal axes to the force reference system) are

related to the motion of the load and the forces and torques exerted on it by the

Newton-Euler equations. The net force qf and the net torque qn acting on the load

at the center of mass are:

qf = f + mg = m4 (2.1)

,n=n-c xf = I+ax (Iw) (2.2)

where:

f = the force exerted by the wrist sensor on the load at the
point p,

m = the mass of the load,

g = the gravity vector (g = [0,0, -9.8 meters/sec2]),

= the acceleration of the center of mass of the load,

n = the torque exerted by the wrist sensor on the load at the

point p,
c = the unknown location of the center of mass relative to the

force sensing wrist origin P,

qI = the moment of inertia tensor about the center of mass,

w = the angular velocity vector, and

c = the angular acceleration vector.

'2
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To formulate an estimation algorithm, the force and torque measured by the
wrist sensor must be expressed in terms of the product of known geometric param-

*@ eters and the unknown inertial parameters. Although the location of the center of

mass and hence its acceleration C are unknown, cj is related to the the acceleration

of the force reference frame f) by

= f) + Cw X c + Wx (WXc c) (2.3 [7.40]1)

*~ Substituting (2.3) into (2.1),

f =mf,-mg+( Xmc+WX (WXmc) (2.4)

Substituting (2.4) into (2.2),

n =qIW + W X (qIW) + mc x (6 x c) + mc x (W X (W x c))

+mcx f)-rmcxg (2.5)

Although the terms c x (c x c) and c x (w x (w x c)) are quadratic in the

unknown location of the center of mass c, these quadratic terms are eliminated by

expressing the moment of inertia tensor about the force sensor coordinate origin

(pI) instead of about the center of mass (I). Rewriting (2.5) as:

n = qI + W X (IW) + m((c'c) l - (ccT)]6

+ W x (m[(cTc)1 - (ccT)W) + mc x -mc x g (2.6)
C,"

and using the three dimensional version of the parallel axis theorem

PI = qI + m[(cTc)1 - (ccT)] (2.7 [10.1471)

to simplify it results in:

n=PIc+Wx (PI)+cxf)-mcxg (2.8)

(1 is the 3 dimensional identity matrix). All the vectors are expressed in the wrist

sensor coordinate system P, so that the quantities c and PI are constant. More-

over, the wrist force/torque sensor measures forces and torques directly in the P

coordinate frame.

' Equation numbers in brackets refer to equations in Symon, 1971.
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In order to formulate the above equations as a system of linear equations, the

following equalities and notations are used:

0 -W, WV CW { o][:][ x]c (2.9)
Wd X C -" W, 0 -W, cy -"X C(2)

_-t V  Wz 0 C,

11 '11

W, wy W, 0 0 0 112 112

W 0[ W. I0l (2.10)
0 w. 0 wV 0 122 12(

0 0( 0 w1 w 123 123

133 ISS

where

Ill 112 113

I=I T =  112 122 (2.11)

113 123 1(1

Using these expressions, Eqs. (2.4) and (2.8) can be written as a single matrix

equation in the wrist sensor coordinate frame:

m

me,

f3  f 1- g [Cxj + [Wx][Wx] 0 me,

f. Il[ [(2.12)

n,0 {(g- M)X I .*(;] + [1,]{2,

n,5  122

23

133j

or more compactly,

w = Aq (2.13)

where w is a 6 element wrench vector combining both the force and torque vectors,

A is a 6 x 10 matrix and 0f is the vector of the 10 unknown inertial parameters.

Note that the center of mass cannot be determined directly, but only as the mass
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moment mc. But since the mass rn is separately determined, its contribution can
be factored from the mass moment later.

V

2.2.2 Estimating The Parameters

-The quantities inside the A matrix are computed by direct kinematics computation

(Luh, Walker, and Paul, 1980a) from the measured joint angles. The elements of
the w vector are measured directly by the wrist force sensor. Since (2.13) represents

6 equations and 10 unknowns, at least two data points are necessary to solve for the
j6 vector, i.e. the force and the position data sampled at two different configurations

of the manipulator. For robust estimates in the presence of noise, a larger number

of data points must be used. Each data point adds 6 more equations, whereas the

number of unknowns, the elements of j6, remain constant. This can be represented

by augmenting w and A as:

All] will

A1w= , n = number of data points (2.14)

A[n] win]

where each A[il and w(il are matrix and vector quantities described in (2.12). For-

mulated this way, any linear estimation algorithm can be used to identify the 0
vector. A simple and popular method is the least squares method. The estimate

for 0 is given by:

S= (ATA)-iATw (2.15)

Equation (2.15) can also be formulated in a recursive form (Ljung and Soderstrom,

1983) for on-line estimation.

2.2.3 Recovering Object And Grip Parameters

The estimated inertial parameters (M, mc, Al) are adequate for control, but for ob-

ject recognition and verification it is also necessary to obtain the principal moments

of inertia 1,, 12, I, the location of the center of mass c, and the orientation QR of

Q with respect to P.
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The parallel axis theorem is used to compute the inertia terms translated to the

center of mass of the load.

C (2.16)
)M

Ji = P1- tn[(#TE)l -- (ZT)] (2.17)

Then, the principal moments are obtained by diagonalizing I.

11 0 0]

I=QpR[ 0 1 0 QP.T (2.18)

This diagonalization can always be achieved since JI is symmetric; but when two or

more principal moments are equal, the rotation matrix qR is no longer unique.

2.3 Experimental Results

2.3.1 Estimation on the PUMA Robot

The inertial parameter estimation algorithm was originally implemented on a PUMA

600 robot equipped with an RTI FS-B wrist force/torque sensor (Figure 2.2), which

measures all six forces and torques. The PUMA 600 has encoders at each joint

to measure joint angles, but no tachometers. Thus, to obtain the joint velocities

and accelerations, the joint angles are differentiated and double-differentiated, re-

spectively, by a digital differentiating filter (Figure 2.3). The cutoff frequency of

33 Hz for the filter was determined empirically to produce the best results. Both

the encoder data the wrist sensor data were initially sampled at 1000 Hz. It was

later determined that a sampling rate of 200 Hz was sufficient, and the data were

resampled at the lower rate to reduce processing time. A least squares identification

algorithm was implemented as an off-line computation, but an on-line implementa-

tion would have been straightforward.

Static Estimation Using The PUMA

To test the calibration of the force sensor and the kinematics of the PUMA arm a

static identification was performed. The forces and torques are now due only to the
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Parameters Actual Static Dynamic

Values Estimates Estimates

Mass (kg) 1.106 1.103 1.067

Change in c,(m) 0.037 0.037 0.039

Mass (kg) 1.106 1.107 1.084

Change in c,(m) -0.043 -0.043 -0.042

Mass (kg) 1.106 1.100 1.073

Change in cv(m) -0.021 -0.020 -0.021

Mass (kg) 1.106 1.099 1.074

Change in c,(m) 0.0181 0.020

Table 2.1: Mass and the Center of Mass Estimates

gravity acting on the load, and equations (2.4) and (2.8) simplify to

f =-mg (2.19)

n = -Mc x g (2.20)

As seen in (2.19) and (2.20), only the mass and the center of mass can be identified

while the manipulator is stationary.

To avoid needing to determine the gripper geometric parameters, the center

of mass estimates are evaluated by the estimates of the changes in the center of

mass as the load is moved along the y-axis from the reference position by known

amounts. The results of estimation are shown in the third column of Table 2.1 for

an aluminum block (2 x 2 x 6in.) with a mass of 1.106Kg. Only the changes in

. are shown in Table 2.1; the estimates of c. and c. remained within 1 mm of the

reference values (c., = 1 mm and c, = 47 mm). Each set of estimates were computed

from 6 sets of data, i.e. data taken at 6 different positions and orientations of the

manipulator, where each data point is averaged over 1000 samples to minimize the

effects of noise. The results show that in the static case the mass of the load can be

estimated to within 10g of the actual mass. The center of mass can be estimated

to within Imm of the actual values for this load.

Static load estimation only tests the force sensor calibration and the position

measurement capabilities of the robot on which the sensor is mounted. In order to
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assess the effects of the dynamic capabilities of the robot on load estimation and

to be able to estimate the moments of inertia of the load, it is necessary to assess

parameter estimation during general movement.

Dynamic Estimation Using The PUMA

In the dynamic case, the joint position encoder and the wrist sensor data are sam-

pled while the manipulator is in motion. A fifth order polynomial trajectory in joint

space was used to minimize the mechanical vibrations at the beginning and the end

of the movement, and to improve the signal to noise ratio (SNR) in the acceler-

ation data (Figure 2.3). For more popular bang-coast-bang type trajectories, the

joint accelerations are zero except at the beginning and the end of the movements,

resulting in poor SNR in the acceleration data for most of the movement.

The PUMA robot lacked the acceleration capacity necessary to estimate the mo-

ments of inertia of the load. It also lacked true velocity sensors at the joints, which

made estimation of the acceleration of the load difficult. The dynamic estimates
of mass and center of mass for the previous load are shown in the last column of

Table 2.1. The data used in these estimates were sampled while the manipulator
was moving from [0, 0, 0, -90, 0, 0 to [90, -60, 90, 90, 90, 901 degrees on a straight

line in joint space in 2 seconds. Joint 4 of the PUMA has a higher maximum ac-
celeration than the other joints, and thus, a longer path was given for it. This

movement was the fastest the PUMA can execute using the fifth order trajectory
without reaching the maximum acceleration for any of its joints. The estimates

used all 400 data points sampled during the 2 second movement. The results show

slight deterioration in these estimates when compared to the static estimates; but

they are still within 40g and 2mm of the actual mass and displacement, respectively.

However, the SNR in the acceleration and the force/torque data were too low for

accurate estimates of the moments of inertia for this load (0.00238Kg . M in the

largest principal moment). In this case, the torque due to gravity is approximately

40 times greater than the torque due to the maximum angular acceleration of the
load. Thus, even slight noise in the data would result in poor estimates of I.
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Parameters Actual PUMA' PUMA2  DDARMI

(kg . m2 ) Values Estimates Estimates Estimates

0.0244 0.0192 0.0246 0.0233

12 0 -0.0048 0.0006 0.0003
113 0 0.0019 0.0008 0.0007

22 0.0007 0.0021 0.0036 0.0001
23 0 -0.0016 -0.0004 -0.0002

13 0.0242 0.0176 0.0199 0.0236
1 (all joints moving)
2 (3 special test movements combined)

Table 2.2: Estimates of the moments of inertia

Special Test Movements Using The PUMA

Therefore, experiments with a different load were performed for the estimates of the

moments of inertia. The new experimental load is shown in Figure 2.2. This load

has large masses at the two ends of the aluminum bar, resulting in large moments

of inertia in two directions (-' 0.024kg in2 ) and a small moment in the other. A

typical set of estimates of the moments of inertia at the center of mass frame for

the load with the gripper subtracted out are shown in Table 2.3.1 for the above
all-joints-moving trajectory. They contain some errors but are fairly close to the

actual values.
In order to improve the estimates, the data were sampled while the robot was

following three separate 2-second rotational trajectories around the principal axes

of the load. Such trajectories used joint 4 and joint 6 only, and resulted in higher

acceleration data than the previous trajectory, thus improving the SNR in both the

acceleration and the force/torque data. Typical estimates for these special move-

ments show improvements over the estimates with the previous trajectory (Table

2.3.1). Although the estimate of 122 is slightly worse than before, all the other terms

have improved; the cross terms, especially, are much smaller than before. However,
these estimates of I are not as accurate as the estimates of the mass and the center 4.

of mass shown in Table 2.1. Most of the error is probably due to the large amount
of noise present in the acceleration data caused by differentiating the joint angle
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data twice. Part of the error may be due to inaccuracies in the current kinematic
A. parameters of the manipulator. Experiments have shown that the actual orientation

of the robot can be up to 40 off from the orientation computed from the encoder

data.

Figure 2.4 shows the comparison of the measured forces and torques, and the

*computed forces and torques generated by a simulator from the estimated parame-

ters and the measured joint data. The two sets of figures match very well even in the

mechanical vibrations, verifying qualitatively the accuracy of the estimates. This

suggests that for control purposes even poor estimation of moment of inertia pa-

rameters will allow good estimates of the total force and torque necessary to achieve

a trajectory. This makes good sense in that the load forces with the PUMA are

dominated by gravitational componenents, and angular accelerations experienced

by the load are small relative to those components.

2.3.2 The MIT Serial Link Direct Drive Arm

The effect of the errors causing poor estimates of moment of inertia parameters

could be alleviated by increasing the angular acceleration experienced by the load.

Since the PUMA robot was already operating at its limits for the experimental

results presented above, the algorithm was next implemented on the MIT Serial

Link Direct Drive Arm, which has much higher acceleration and velocity capability.

The DDARM also has a tachometer on each of its three joints so that numerical

differentiation of positions is unnecessary; but the accelerations were obtained by

digitally differentiating the velocities using a cutoff frequency of 30Hz. A Barry

Wright Company Astek FS6-120A-200 6-axis force/torque sensor was used to :aea-

sure all three forces and three torques about a point. The positions and velocities
of the robot were initially sampled at 1kHz but were later down-sampled to match

the sampling frequency of the force/torque sensor of 240 Hz. The identification
procedure was again implemented off-line.

4.. Dynamic Estimation Using The Direct Drive Arm

The data used for estimating the inertial parameters of the load were sampled while

the manipulator was moving from (280,269.1,-30) to (80,19.1,220) in one second.

Again a fifth order polynomial straight line trajectory in joint space was used. The
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estimates using the Direct Drive Arm.
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resulting estimates for the moment of inertia parameters are shown in the last

column of Table 2.3.1. The estimates for the mass and the location of the center of

mass were as good as the PUMA results and are not shown. The estimated moment

of inertia parameters are on the whole better than the PUMA results.

Parameters estimated for a set of special test movements using the direct drive

arm were not substantially different. The special test movements for the DDARM

were not substantially faster than the movement of all joints, and thus probably

contained the same amount of information.

Finally, Figure 2.5 shows the comparison of typical measured forces and torques

with computed forces and torques generated by a simulator from the estimated

parameters and the measured joint data. Once again there is a very good match

between the measured and the predicted forces and torques. Thus, as expected,

the combination of higher angular accelerations and good velocity sensing results

in better parameter estimates,

2.4 Discussion

2.4.1 Usefulness of the Algorithm

It is important to realize that there are two distinct uses of an identified model.

For control what matters is matching the input-output behavior of the model (in

this case the relationship of load trajectory to load forces and torques) to reality,

while for recognition/verification what matters is matching estimated parameters

to a set of parameters postulated for reality. Both implementations of load inertial

parameter estimation successfully match the input-output behavior of the load (
Figures 2.4 and 2.5), However, the limited acceleration capacity of the PUMA robot

and its limited sensing result in relatively poor estimates of the moments of inertia

of the load without the use of special test motions. In all cases the mass and the

location of the center of mass could be accurately estimated from both series of

static measurements, and dynamic measurements. Hence, identifying parameters

well enough for recognition of the object may require large accelerations or special

test movements in order to obtain the moment of inertia parameters accurately.
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2.4.2 Sources of Error

This work is preliminary in that an adequate statistical characterization of the

errors of the estimated parameters of the predicted forces has not been attempted.

Nevertheless, some insights were gained into the sources of such errors.

The ultimate source of error is the random noise inherent in the sensing process

itself. The noise levels on the position and velocity sensing are probably negligible,

and could be further reduced by appropriate filtering using a model based filter

such as the Extended Kalman Filter. The force and torque measurement process

involve measuring strain of structure members in the sensor with semiconductor

strain gages. The random noise involved in such measurements is also probably

negligible.

Bias Errors

However, semiconductor strain gages are notoriously prone to drift. Periodic recal-

ibration of the offsets (very often) and the strain-to-force calibration matrix (often)

may be necessary to reduce load parameter estimation errors further. During the

experiments presented in this chapter, in order to minimize the bias errors, the data

were taken after the force sensors had been left on for a while to warm up and the

offsets were recalibrated before each data collection session.

Unmodelled Dynamics

A further source of noise is unmodelled structural dynamics. Neither the robot

*links nor the load itself are perfectly rigid bodies. A greater source of concern is the

compliance of the force sensor itself. In order to generate structural strains large

enough to be reliably measured with even semiconductor strain gage technology,

a good deal of compliance is introduced into the force sensor. The load rigidly

attached to the force sensor becomes a relatively undamped spring mass system.

The response of the Astek force sensor to a tap on an attached load is shown in the
"undamped impulse response" record of Figure 2.6. The effect of robot movement

on this spring mass system is shown in the "undamped movement response" record.
". There are several approaches to ta e to deal with this problem of unmodelled dy-

namics. One approach is to attempt to identify the additional dynamics. However,
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this greatly increases the complexity of the identification process and the amount

of data that needs to be collected to get reliable estimates of any parameter.

Another approach is to try to avoid exciting the unmodelled dynamics by choos-

ing robot trajectories that were as smooth as possible. Therefore, the 5th order

polynomial trajectories were chosen in the experiments so that the velocities and

accelerations are always continuous. Using higher order polynomials would result

in even greater smoothness. However, with the PUMA a smooth commanded tra-

jectory did not result in a smooth actual trajectory, because the control methods

used and the actual hardware of the robot still introduced substantial vibration.

One way to tell if the PUMA is turned on is to touch it and feel if it is vibrating.

Vibrations were less of a problem with the direct drive arm, although still present.

The most successful approach is to mechanically damp out the vibrations by

introducing some form of energy dissipation into the structure. Hard rubber washers

were added between the force sensor and the load. The "damped impulse response"

of Figure 2.6 illustrates the response of the force sensor to a tap on the load. The

oscillations decay much faster with the added damping. The "damped movement

response" indicates that this mechanical damping also greatly reduces the effect of
movement on the resonant modes of the force sensor plus load.

A better method would have been to design appropriate damping into the force

sensors, just as accelerometers are filled with oil to provide a critically damped

response for a specified measurement bandwidth. Failing that, energy dissipation

must be introduced either into the structural components of the robot or into the

gripper either structurally or as a viscous skin. As will be discussed later, appropri-

ate mechanical damping may also be useful when using a force sensor in closed-loop

force control.

Optimal Filtering

Finally, the need to numerically differentiate the velocity to find the acceleration

greatly amplifies whatever noise is present. One can avoid the need to explicitly

calculate acceleration by integrating equations (2.4) and (2.8). However, since an

integrator is an infinite gain filter at the 0 frequency, large errors can result from

small low frequency errors such as offsets. The best performance will be achieved

from applying some "optimal" filter, whose shape is probably an integrator at high
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frequencies but a differentiator at lower frequencies (Atkeson, 1986).

2.4.3 Inaccurate Estimates of the Moments of Inertia

One of the factors that make it difficult to identify moments of inertia accurately is

the typically large contribution of gravitational torque, which depends only on the

mass and the relative location of the center of mass to the force sensing coordinate

origin. A point mass rotated at a radius of 5cm from a horizontal axis must complete

a full 360 rotation in 425 milliseconds for the torque due to angular acceleration

to be equal to the gravitational torque, if a 5th order polynomial trajectory is used.

A way to avoid gravitational torques is to rotate the load about the vertical axis,

or to have the point of force/torque sensing close to the center of mass.

A simple example will illustrate the difficulty of recovering principal moments

of inertia, given the moment of inertia tensor about the force sensing origin. The

principal moment of inertia of a uniform sphere surface is only 2/7 of the total

moment of inertia when it is rotated about an axis tangent to its surface, so that

the effects of any errors in estimating the mass, the location of the center of mass,

and the grip moments of inertia are amplified when the principal moment of inertia

is calculated. This problem can be reduced by having the point of force sensing as

close to the center of mass as possible

It still may be difficult to find the orientation of the principal moments of inertia

even when the moment of inertia tensor about the center of mass has been estimated

fairly accurately. This occurs when two or more principal moments of inertia are

approximately equal. Finding the orientation of the principal axis is equivalent to

diagonalizing a symmetric matrix, which becomes ill-conditioned when some of the

-.. eigenvalues are almost equal. A two dimensional example illustrates the problem.

Consider the diagonalized matrix

[ cos() -sin(O) 1 0 cos(e) sin(e) (2.21)

sin(O) cos(O) 0 A2  -sin(O) cos(O) (

with eigenvalues {A1 , A2 } and whose first principal axis is oriented at an angle 0 with

respect to the x axis. When the two eigenvalues are almost equal, the terms of the

matrix dependent on the angle 0 become very small. By substituting Al - A =
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into the matrix (2.21),

[ A2 + fCOS') cos(O) sin(O) (2.22)

c cos(9) sin(O) A2 + esin,() (.

All terms that contain angle information are multiplied by the difference (e) of

the principal moments of inertia. With a fixed amount of noise in each of the entries

of the identified moment of inertia matrix, the orientation of the principal axis (0)

will become more and more difficult to recover.

2.5 Conclusion

In summary, it was demonstrated that the inertial parameters of a manipulator

load can be estimated accurately enough for purposes of control. The estimation

algorithm was derived from the reformulation of the Newton-Euler equations for

the rigid-body dynamics of a load so that the equations are linear in terms of the

unknown inertial parameters. The estimation procedure then involved a simple

least squares solution to a set of linear equations. In Chapter 3, this estimation

method for a load will be extended to estimate the inertial parameters of all the

links of a manipulator.

Si
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Chapter 3

Estimation of Link Inertial
Parameters

3.1 Introduction

This chapter presents a method of estimating all of the inertial parameters, the

mass, the center of mass, and the moments of inertia of each rigid body link of a

robot manipulator using joint torque sensing. Determining these parameters from

measurements or computer models is generally difficult and involves some approxi-

mations to handle the complex shapes of the arm components. Typically, even the

manufacturers of manipulators do not know accurate values of these parameters.

The degree of uncertainty in inertial parameters is an important factor in judg-

ing the robustness of model-based control strategies. A common objection to the

computed torque methods, which involve full dynamics computation (e.g., Luh,

Walker, and Paul, 1980b), is their sensitivity to modelling errors, and a variety of

alternative robust controllers have been suggested (Samson, 1983; Slotine, 1985;

Spong, Thorp, and Kleinwaks; 1984, Gilbert and Ha, 1984). Typically these robust

controllers express modelling errors as a differential inertia matrix and coriolis and

gravity vectors, but in so doing, no rational basis is provided for the source of errors

or the bounds on errors. The error matrices and vectors combine kinematic and dy-

This chapter is a revised version of (An, Atkeson, and Hollerbach, 1985)
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namic parameter errors, but kinematic calibration is sufficiently developed so that

very little error can be expected in the kinematic parameters (Whitney, Lozinski,
and Rourke , 1986).

One aim of this work is to place similar bounds on inertial parameter errors by

explicitly identifying the inertial parameters of each link that go into the making of

the inertia matrix and coriolis and gravity vectors. The load identification results

of Chapter 2 suggests, for example, that mass can be accurately identified to within

1%. Therefore, an assumption of 50% error in link mass in verifying a robust

control formulation (Spong, Thorp, and Kleinwaks, 1984) is an unreasonable basis

for argument. Slotine (1985) suggests that errors of only a few percent in inertial

parameters make his robust controller superior to the computed torque method,

but it may well be that these parameters can be identified more accurately than his

assumptions.
In this thesis, as an alternative approach, the inertial parameters will be esti-

mated on the basis of direct dynamic measurements. The algorithm of Chapter 2

(Atkeson, An, and Hollerbach, 1985b), used to identify load inertial parameters, can

be modified to find link inertial parameters of a robot arm made up of rigid parts.

The Newton-Euler dynamic equations are used to express the measured forces and

torques at each joint in terms of the product of the measured movements of the

rigid body links and the unknown link inertial parameters. These equations are

linear in the inertial parameters. However, unlike load estimation, the only sensing

is one component of joint torque, inferred from motor current. Coupled with re-

stricted movement near the base, it is, therefore, not possible to find all the inertial

parameters of the proximal links. As will be seen, these missing parameters have

no effect on the control of the arm.

In this chapter, manipulators with only revolute joints are discussed since han-

dling prismatic joints requires only trivial modifications to the algorithm. The

proposed algorithm was verified by implementation on the MIT Serial Link Direct

Drive Arm.

3.1.1 Previous Work

Mayeda, Osuka, and Kangawa (1984) required three sets of special test motion, to

estimate the coefficients of a closed-form Lagrangian dynamics formulation. T'ie 10
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inertial parameters of each link are lumped into these numerous coefficients, which

are redundant and susceptible to numerical problems in estimation. On the other

hand, every coefficient is identifiable since these coefficients represent the actual

degrees of freedom of the robot. By sensing torque from only one joint at a time,

their algorithm is more susceptible to noise from transmission of dynamic effects of

distant links to the proximal measuring joints. For efficient dynamics computation,

the recursive dynamics algorithms require the link parameters explicitly. Though

recoverable from the Lagrangian coefficients, it is better to estimate the inertial

parameters directly. Though this algorithm was implemented on a PUMA robot,

it is difficult to interpret the results because of dominance of the dynamics by the

rotor inertia and friction.

Mukerjee (1984; Mukerjee and Ballard, 1985) directly applied his load identifi-

cation method to link identification, by requiring full force-torque sensing at each

joint. Instrumenting each robot link with full force-torque sensing seems imprac-

tical, and is actually unnecessary given joint torque sensing about the rotation

axis. Partially as a result, he does not address the issue of unidentifiability of

some inertial parameters. Also, he did not verify his algorithm by simulation or by
implementation.

Olsen and Bekey (1985) presented a link identification procedure using joint

torque sensing and special test motions with single joints. The unidentifiability

of certain inertial parameters was not resolved, and the least squares estimation

procedure written as a generalized inverse would fail because of linear dependence of

some of the inertial parameters. Again, their procedure was not tested by simulation

or by actual implementation on a robot arm.

Neuman and Khosla (1985) developed a hybrid estimation procedure combining

a Newton-Euler and a Lagrange-Euler formulation of dynamics. Simulation results
for a three degree-of-freedom cylindrical robot were presented, and the unidentifi-
ability of certain inertial components was addressed. For some reason they state

link mass must be known for a linear estimation procedure, but such a restriction

does not exist with the method of this Chapter. Though planning to work with the

CMU DDArm II, they have not yet presented experimental results.

Khalil, Gautier, and Kleinfinger (1986) used a Lagrange formulation in pre-

senting an identification model for link inertial parameters. They addressed the

unidentifiability of some parameters, and used it to regroup the dynamic param-
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eters and simplify computation. However, they did not try any estimation using

their model.

Armstrong, Khatib, and Burdick (1986) measured the inertial properties of a

PUMA 560 robot by counter-balancing the disassembled parts. This is an alterna-

tive approach to estimation, but is very tedious. Also the cross terms of the inertia

matrix cannot be obtained in this way.

3.2 Estimation Procedure

3.2.1 Formulation of Newton-Euler Equations

In Chapter 2, the Newton-Euler equations for a rigid body load were formulated

to be linear in the unknown inertial parameters. Then simple linear least squares

method was used to estimate those parameters. By treating each link of a manipula-

tor as a load, this formulation can be extended to the link estimation problem. The

differences in the equations are that only one component of force or torque is sensed

and that the forces and torques from distal links are summed and transmitted to

the proximal joints.

Consider a manipulator with n joints (Figure 3.1). Each link i has its own local

coordinate system Pi fixed in the link with its origin at joint i. The joint force and

torque due to the movement of its own link can be expressed by simply treating the

link as a load and applying the equations from Chapter 2 for load identification:

'i -
i C y

[i = ,-g x +0 i
0 0 1 [ DO XI lox] t;)] + [[xo[I] I,,

nit] I,,

*ISi

I,,, J

or more compactly,

w= = A, , (3.1)
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Figure 3.1: Coordinate origins and location vectors for link identification.
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where wij is the wrench (vector of forces and torques) at joint i due to movement of

link j alone. Ai is the kinematic matrix that describes the motion of link i and 4', is

the vector of unknown link inertial parameters. All of the quantities are expressed

in the local joint i coordinate system.

The total wrench wi at joint i is the sum of the wrenches wij for all links j

distal to joint i:
N

W,- Wij (3.2)
j=i

Each wrench wij at joint i is determined by transmitting the distal wrench wj
across intermediate joints. This is a function of the geometry of the linkage only.

The forces and torques at neighboring joints are related by

[ r1 R, 0 f+ I (3.3)
.ni+1 [six]. IR R ni+1,i+1

or more compactly

=w,,+l-- T, w,+,i+l (3.4)

where

RI-= the rotation matrix rotating the link i + 1 coordinate system to the link i

coordinate system.

s = a vector from the origin of the link i coordinate system to the link i + 1 coor-
dinate system, and

Ti= a wrench transmission matrix.

To obtain the forces and torques at the ith joint due to the movements of the

j"h link, these matrices can be cascaded:

wi=TiTi+l''' Tiwii (3.5)

where Uij - TTi+I .. TjAi and U, = A,. A simple matrix expression for a serial
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kinematic chain (in this case a six joint arm) can be derived from (3.2) and (3.5):

w1 U11 U12 1U13 U14 UIS 'U16 #1

W2 0 U 22 U23 U24 U25 U 26  #

W _ 0 0 U 3 U34 U 35 U 3 6 #3 (3.6)

W4 0 0 0 U 44 U45 U46 4

w5  0 0 0 0 Us U5 6  #

w6 0 0 0 0 0 Um #6

This equation is linear in the unknown parameters, but the left side is composed

of a full force-torque vector at each joint. Since only the torque about the joint axis

can usually be measured, each joint wrench must be projected onto the joint rotation

axis (typically [0, 0, 11 in internal coordinates), reducing (3.6) to

T = K b (3.7)

where ;i = [0,0, 0,0,0, 1].w, is the joint torque of the ih link, 0 = [%', 02, 03, 04, #r, #6]T ,

and K,3 = [0, 0, 0, 0, 0, 1]. Uij when the corresponding entry in (3.6) is nonzero. For

an n-link manipulator, r is a n x 1 vector, 0 is a 10n x 1 vector, and K is a n x 10n

matrix.

3.2.2 Estimating the Link Parameters

Equation (3.7) represents the dynamics of the manipulator for one sample point.

As with load identification, (3.7) is augmented using N data points:

K(1) T(1)

K(N) r(N)

Unfortunately, one cannot apply simple least squares estimate:

ke.,matc = (KTK) -IKTT (3.8)

because KTK is not invertible due to loss of rank from restricted degrees of free-

dom at the proximal links and the lack of full force-torque sensing. Some inertial

parameters are completely unidentifiable, while some others can only be identified

in linear combinations.

47



Two different approaches were used to solve the above rank deficient problem.

The simplest is ridge regression (Marquardt and Snee, 1975), which makes K TK

invertible by adding a small number d to the diagonal elements:

= (KTK + dIon)-'KTr (3.9)

The estimates are nearly optimal if d << A .(KTK), where Amin is the smallest

non-zero eigenvalue of KTK.

Another approach expresses the dynamics in terms of a reduced set of inertial

parameters that are independently identifiable and that allow the application of a

straight least squares estimate. This reduced set can be generated either by exami-

nation of the closed form dynamic equations for linear combinations of parameters,

or by application of singular value decomposition. Both methods were applied and

the results checked against each other. The closed form equations were derived

with the aid of MACSYMA (Mathlab Group, 1983) for the MIT Serial Link Direct

Drive Arm, since for 3 degrees of freedom the dynamic equations in closed form are

already quite complicated. The results are summarized in Appendix 1 in terms of

15 essential variables; made explicit are both the unidentifiable parameters and the

parameters identifiable only in linear combinations.

A far less complicated method that can be applied rather automatically to any

manipulator kinematic structure is singular value decomposition of K in (3.8), yield-

ing (Golub and Van Loan, 1983)

K = UEVT

where E = diag{ao} and U and VT are orthogonal matrices. For each column of

V there corresponds a singular value a, which if not zero indicates that the linear

combination of parameters, vTtk, is identifiable. The unidentifiable parameters will

have zero singular values associated with them. Since K is a function only of the

geometry of the arm and the commanded movement, it can be generated exactly

by simulation rather than by actually moving the real arm and recording data with

the concomitant and inevitable noise. For completely unidentifiable parameters,

the corresponding columns of K can be deleted without affecting r. For parameters

identifiable in linear combinations, all columns except one in a linear combination

can also be deleted. The resulting smaller KTK matrix will be invertible, and (3.8)
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Figure 3.2: The link coordinate system for DDARM

can be used to estimate the reduced set of parameters.

3.3 Experimental Results

Link estimation was implemented on the MIT Serial Link Direct Drive Arm As

discussed in Chapter 1, the ideal rigid body dynamics is a good model for this arm,

uncomplicated by joint friction or backlash typical of other manipulators. Hence the

fidelity of this manipulator's dynamic model suits estimation well. The coordinate

system for this arm is defined in Figure 3.2. A set of inertial parameters is available

for the arm (Table 3.1)), determined by modeling with a CAD/CAM database (Lee,

1983). These values may not be accurate because of inevitable modeling errors, but

they can serve as a point of comparison for the estimation results.

Joint 1 is presently capable of an angular acceleration of 1150 deg/sec2 , joints 2

and 3 in excess of 6000 deg/sec2 . In comparison, joint 1 of the PUMA 600 has a peak

acceleration of 130 deg/seO2 and joint 4 at the wrist 260 deg/sec2 . Joint position is

measured by a resolver and joint velocity by a tachometer. The tachometer output

is of high quality and leads to good acceleration estimates after differentiation.

The accuracy of the acceleration estimates plus high angular accelerations greatly
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improves inertia estimation.

The joint torques are computed by measuring the currents of the 3 phase wind-

* ings of each motor (Asada, Youcef-Toumi, and Lim, 1984). For the three phase

brushless permanent magnet motors of the direct drive arm, the output torque is

related to the currents in the windings by:

r = KT(I. sin(nO + offset) + Ib sin(nB + 120+ offset) + Isin(nO + 240+ offset))

(3.10)

where

o J 1 00 for Joint 1
n= offf Jset It -33.3 for Joint 2

9 for Joints 2 and 3 f-108 for Joint 3

The torque constant KT for each motor is calibrated statically by measuring the

force produced by the motor torque at the end of a known lever arm. As in load

identification experiments, the force is measured using a Barry Wright Company

Astek FS6-120A-200 6-axis force/torque sensor. Asada, Youcef-Toumi, and Lim

(1984) have found that for a motor similar to the motors of the DDARM, the

torque versus current relationship was non-linear, especially for small magnitudes

of torques, and also varied as a function of the rotor position. However, for the

results presented in this paper, the nonlinear effects were ignored since substantial

portions of the movements in the experiments required large magnitudes of torques.

Since the least squares algorithm minimizes the square of the error, torque errors

for torques of small magnitudes do not affect the estimates very much.

For the estimation results presented, 600 data points were sampled while the

manipulator was executing 3 sets of fifth order polynomial trajectories in joint

space. The specifications of the trajectories were:

1. (330, 289.1,230) to (80, 39.1, -10) degrees in 1.3s,

2. (330, 269.1, -30) to (80, 19.1, 220) degrees in 1.3s,

3. (80, 269.1, -30) to (330, 19.1, 220) degrees in 1.3s,
3.(,e

Since KTK in (3.9) is singular, estimates for the 30 unknowns are computed by

adding a small number (d 10.0 << Amn(KTK) 3395.0) to the diagonal ele-

ments of KTK.
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[Parameters 11 Link 1 Link 2 Link 3

m(Kg) 67.13 53.01 19.67

mc,(Kg m) 0.0 0.0 0.3108

mcy 2.432 3.4081 0.0

mc, 35.8257 16.6505 0.3268

I..(Kg. im2 ) 23.1568 7.9088 0.1825

l, 0.0 0.0 0.0
I' -0.3145 0.0 -0.0166

IVY 20.4472 7.6766 0.4560

IV, -1.2948 -1.5036 0.0
I,, 0.7418 0.6807 0.3900

Table 3.1: CAD-modeled inertial parameters.

'9

Parameters 11 Link 1 1Link 2 1 Link3

m(Kg) 0.0 °  0.0* 1.8920t

mc,(Kg , m) 0.0 °  -0.1591 0.4676
mc, 0.0* 0.6776t 0.0315

me, 0.0* 0.0 -1.0087t

I,, (Kg . m2 ) 0.0* 4.1562t 1.5276t
I.V 0.0* 0.3894 -0.0256

1.. 0.0* 0.0118 0.0143

IMU 0.0* 5.2129t 1.8967t

IY, 0.0 -0.6050t -0.0160

I, 9.33598t -0.8194t 0.3568

Table 3.2: Estimated inertial parameters.

51

"4 .;,' .' . _- , ,'. .." .,'. ,, . _. . .' - .- - . - .,r . ,. -D ,,- " • ,,,. . - * -.. , , *%, . -. , . . -.,.*_-. . . ,,,- ,. . , .,- " ' ,,



Linear Combinations J Estimated CAD-Modeled

M3 CA,1 2 + Iy2 -1.0710 -1.3526

I.3 - IVY -0.3691 -0.2702

1,,2 + I2 0.7082 0.8632

I + I- 2 + I2 + msl 15.4236 13.0315

1.22 + IZZ - 0.4709 0.4147

mcs3 - r2CV2 -1.6863 -3.0814

Table 3.3: Parameters in linear combinations (12 = 0.462 m.)

Typical results, obtained using ridge regression method, are shown in Table 3.2.

Parameters that cannot be identified because of constrained motion near the base

are denoted by 0.0*. The first nine parameters of the first link are not identifiable

because this link has only one degree of freedom about its z axis. These nine

parameters do not matter at all for the movement of the manipulator and thus can

be arbitrarily set to 0.0.
Other parameters marked by (f) can only be identified in linear combinations,

indicated explicitly in Table 3.3. The ridge regression automatically resolves the

linear combinations in a least squares sense. It can be seen that the estimated sums

roughly match the corresponding sums inferred from the CAD-modeled parameters,

but the sizeable discrepancy indicates that one parameter set may be more accurate

than the other.

To verify the accuracy of the estimated and the modeled parameters, the mea-

sured joint torques are compared to the torques computed from the above two

sets of parameters using the measured joint kinematic data. As shown in Figure C
3.3, the estimated torques match the measured torques very closely. The torques,

computed from the CAD/CAM modeled parameters do not match the measured

torques as closely. This comparison verifies qualitatively that for control purposes -"

the estimated parameters are in fact more accurate than the modeled parameters.

However, as in Chapter 2, one cannot make conclusion on the absolute accuracy of

the estimates on the basis of the plots in Figure 3.3. The plots only tell us that one

can predict the joint torques well.

'The offsets are due to abnormalities in the commutation circuitry as well as offsets in resolvers.
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Since the purpose of obtaining the estimates was to improve the control perfor-

mance, the best test for verifying the goodness of the estimates is to use them in

robot controllers. In Chapter 4, the estimated inertial parameters will be used in

studying the effectiveness of different control algorithms.

3.4 Discussion

Good estimates of the link inertial parameters were obtained as determined from the

match of predicted torques to measured torques. The potential advantage of this

movement-based estimation procedure for increased accuracy as well as convenience

was demonstrated by the less accurately predicted torques based on the CAD-

modeled inertial parameters.

The inaccuracy of the CAD-modeled parameters is due to several sources. The
links and the motors are complicated and computing the inertial parameters from

the schematic drawing of the manipulator is bound to contain modelling errors.

For the MIT Serial Link Direct Drive Arm, the masses and moments of inertia

are dominated by the large motors at the joints. The modelling of the inertial

properties of these motors are difficult since they are made of complicated parts

such as the stator windings. Also, the links can be attached to the rotor axes at

arbitrary positions by the assembler, introducing uncertainty in the CAD-modeled

parameters.

It is possible that the inaccuracy of the CAD-modeled parameters is exagger-

ated, since the same sensors that were used in the estimation are being used to

compare the CAD-modeled parameters to the dynamically estimated parameters.

Presumably a systematic error in the sensors, such as a mis-calibration of motor

torque constants KT, would be reflected in the dynamically estimated parameters.

This would lead to a judgment of better match with these estimated parameters,

even though the CAD-modeled parameters could conceivably be the more accurate.

Ideally an independent measuring procedure such as weighing and counterbalancing

should be used to resolve this point, but this was not tried.

With regard to errors in the motor torque constant, the motors were calibrated

with a commercial force/torque sensor, and it is expected that errors in this cali-

brating device are very small. Problems of a dead zone near zero torque and torque

ripple (Asada, Youcef-Toumi, and Lim, 1984) are not considered to be significant
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Figure 3.3: The measured, CAD-modelled, and the estimated joint torques
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because of the large torques used in this study. Other sources of error are the same

as discussed in the previous chapter, and are not repeated here.

Even supposing that there are possible errors in the sensors or kinematic varia-

tions due to assembly, the importance of the dynamic estimation of the link inertial

parameters is actually emphasized. The controller must deal with the robot kine-

matics and sensor calibration as they exist, and the estimated model will accom-

modate kinematic variations and cancel sensor calibration error.

3.4.1 Identifiability of Inertial Parameters

There are three groups of inertial parameters: fully identifiable, identifiable in linear

combinations, and completely unidentifiable. Membership of a parameter in a group

depends on the manipulator's particular geometry. As shown in Table 3.2 and

Appendix 1 for the MIT Serial Link Direct Drive Arm, the 30 inertial parameters

.-.. are grouped into the following categories:

- 1. fully identifiable: m 2c 2, I 2, I 21 m 3Cr s8, m 3CY3, Z3 1, I ZZ1, I Y, , ',-3

2. identifiable in linear combinations: I..,, m 2C 2 , '222, lVY2, IY82, I,,2s 3, m 3 C,,
' ':"IXX3 I~VY

3. completely unidentifiable: inl, m1c rn,, m rnz1 mIc,1 , IZZ, YI,1 , IZ , I11,,

in 2 , m 2 c,,

4Some link inertial parameters are unidentifiable because of restricted motion

near the base and the lack of full force-torque sensing at each joint. For the first

link, rotation is only possible about its z axis. Suppose full force-torque sensing is

.4:i available at joint 1. It can be seen from (3.1) that I221, I2y, and I., are unidentifi-

able because they have no effect on joint torque. Since the gravity vector is parallel

to the z axis, C,, is also unidentifiable. If it is now supposed that only torque about

the z axis can be sensed, then all inertial parameters for link 1 become unidentifiable

except I,,,.

In a multi-link robot a new phenomenon arises. Some parameters can only be

identified in linear combinations, because proximal joints must provide the torque

sensing to identify fully the parameters of each link. Certain parameters from distal

-p'
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links are carried down to proximal links until a link appears with a rotation axis ori-

ented appropriately for completing the identification. In between, these parameters

appear in linear combinations with other parameters. This partial identifiability

and the difficulty of analysis become worse as the number of links are increased.

The ridge regression automatically resolves the linear combinations in a least

squares sense, which makes these inertial parameters appear superficially different

from those derived by CAD modeling. This is an approximation to computing the

pseudo inverse to solve the rank deficient least squares problem.

Although not as simple as ridge regression, singular value decomposition of

K in (3.8) to determine the minimal number of inertial parameters is attractive

since it allows reformulating the dynamics with identifiable parameters only. The

procedure isolates several sets of parameters whose linear combinations within each

set are identifiable. The linear combinations can be reduced by consistently setting

certain parameters in these sets to zero, leaving only one non-zero parameter in each

set; for example, zeroing M 3 , m 3 CS3 , IZZ3, and I.., leaves I,,,, Ivv, 1,3, I., IVY2,

and m 2 C., as identifiable parameters. The unidentifiable parameters can also be

set to zero. Finally, what remains is a reduced full-rank KTK matrix of dimension

15 x 15.
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Chapter 4

Feedforward and Computed
Torque Control

4.1 Introduction

The accuracy of the manipulator dynamic model impinges on the performance of a

dynamic controller using that model. Since friction is negligible for the direct drive

arms, and presuming that one has good control of joint torques, the issue of accuracy

reduces to how well the inertial parameters of the rigid links are known. In Chapters

2 and 3, an algorithm was developed for estimating these inertial parameters for

any multi-link robot as a result of movement, and the inertial parameters of the

MIT Serial Link Direct Drive Arm were estimated. This chapter presents results

of utilizing the estimated model to control the robot by both off-line (feedforward)

and on-line (computed torque) computation of the joint torques.

Two sets of experiments were performed with the MIT Serial Link Direct Drive

Arm (DDARM) involving a subset of proposed control strategies. The first set of

experiments is based on a hybrid control system. There is an independent analog

servo for each joint with the position and velocity references, and feedforward com-

mands generated by a microprocessor. Since most commercial arms are controlled

by simple independent PID controller for each joint, an independent PD controller

This chapter is a revised version of (An, Atkeson, Griffiths, and Hollerbach; 1986)
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was tested on this arm to provide a baseline for comparison. The PD controller was

augmented by feeding forward first gravity compensation and then the complete

rigid body dynamics to ascertain any trajectory following improvements attained

by taking the nonlinear dynamics more fully into account. The second set of ex-

periments shows the preliminary results of digital servo implementation, using one

Motorola 68000 based microprocessor to control all the joints of the DDARM. The

on-line computed torque approach is compared to the PD and to the feedforward

approaches using the digital servo.

4.1.1 Control Algorithms

The full dynamics of an n degree-of-freedom manipulator are described by

n = J(q)4 + b(q, q) + g(q) + f1,(q, 4) (4.1)

where n is the vector of joint torques (for rotational joints), q is the vector of joint

angles, J is the inertia matrix, b is the vector of coriolis and centripetal terms, g

is the gravity vector, and f!, is the vector of friction terms. The simplest and most

common form of robot control is independent joint PD control, described by

n = K.(4d - q) + K,(qj - q) (4.2)

where ilq and q are the desired joint velocities and positions, and Kp and K. are

nxn diagonal matrices of position and velocity gains.

Feedforward control (Fig. 4.1) augments the basic PD controller by providing a

set of nominal torques nff:

nff(qd, 4d, 4d) - . (q.) 4d + b(qd, 4d) + k(qd) + if,(q., €dq) (4.3)

where the hat () refers to the modelled values. When this equation is combined

with (4.2), the feedforward controller results:

n = nff(qd, td, 4d) + K.(4d - 4) + Kp(qd - q) (4.4)

The feedforward term nf! can be thought of as a set of nominal torques which

linearize the dynamics (4.1) about the operating points qd, td, and 4d. Therefore,

. it is reasonable to add the linear feedback terms K,(4d - 4) + Kp(qd - q) as the
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Figure 4.1: Feedforward controller

control for the linearized system. These feedforward terms can be computed off-line,

since they are function of the parameters of the desired trajectory only.
On the other hand, the computed torque controller computes the dynamics on-

line, using the sampled joint position and velocity data. The control equation is:

n4 (qd, q, d,4cl) - (q)4* + i6 (q,4j) +1(q) +f/,(q,4) (4.5)

where 4* is given by,

f = d + K,(q - 4) + K,(qd - q). (4.6)

If the robot model were exact, then each link of the robot is decoupled, and the

trajectory error goes to zero. Gilbert and Ha (1984) have shown that the computed

torque control method is robust to small modelling errors.

Previously, Liegeois, Fournier, and Aldon (1980) suggested feedforward control

as an alternative to the on-line computation requirements of computed torque con-

trol, although they did not present any experimental results. Golla, Garg, and

Hughes (1981) discussed different linear state-feedback controller using a linearized

model of a manipulator. Asada, Kanade, and Takeyama (1983) presented some

results of applying a feedforward control to the early version of a direct drive arm
at the Robotics Institute of CMU, though for quite slow movements and for in-
ertial parameters derived by CAD modeling. The computed torque method has

been considered by several researchers (Paul, 1972; Markiewicz, 1973; Bejczy, 1974;
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Luh, Walker, and Paul, 1980b; Gilbert and Ha, 1984). Although simulation re-

sults have been presented, there has been very few published report on the actual

implementation of this controller, mainly due to the lack of an appropriate manip-
ulator or on-line computational facility. Working with a direct drive arm, Khosla

and Kanade (1986) presented performance comparisons of of the computed torque

controller to the PD controller. The conclusion from their experiments is similar to
the conclusion of this chapter.

In this paper, the feedforward control is first used as a method of evaluating
the accuracy of the estimates of the inertial parameters of the links, and compare

performance of the feedforward controller to several other simpler control methods

for high speed movements. Then, I present some preliminary results on the im-
plementation of a computed torque controller, again using the estimated inertial

parameters of the links.

4.2 Robot Controller Experiment

4.2.1 Feedforward Controller

In this section, performances of several different controllers for full motion of the

DDARM is evaluated using a hybrid controller (An, Atkeson, and Hollerbach, 1986).

The reference positions and velocities, and the feedforward torques are generated by
a microprocessor and input to three independent joint analog servos. Evaluations

of the following five control methods are performed with high speed movements of

all three joints of the manipulator:

1. PD controller with position reference only:

n = -KAq + K,(qd - q)

2. PD controller with position reference and feedforward of gravity torques:

n = g(qd) - K.4 + Kp(qd - q)

3. PD controller with position and velocity references:
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n = K.(41-4) + K,(qd- q)

4. PD controller with position and velocity references plus feedforward of gravity

torques:

n = t(q) + K.(i - 4) + Kp(ql- q)

5. PD controller with position and velocity references plus feedforward of full

dynamics:

n = T(qd)4d + £(q, jd) + &(qt) + K.(4.j - 4) + Kp(qj - q)

In these experiments, friction was neglected. The nominal position and velocity

gains were adjusted experimentally to achieve high stiffness and overdamped chara-

teristics without the feedforward terms.

A fifth order polynomial in joint space was used to generate the reference trajec-

tory. The joints moved from (800, 269.1', -30 °) to (3300, 19.1',220') in 1.38, with

peak velocities of 360 deg/sec and the peak accelerations of 854 deg/sece for each

joint. The reference trajectory for Joint 1 is shown in Figure 4.2. For control meth-

ods (2), (4), and (5), the estimates of the link inertial parameters given in Chapter 3

(An, Atkeson, and Hollerbach; 1985) were used to compute the feedforward torques.

The trajectory errors for the above 5 controllers are shown on Figure 4.3. The

errors for the first controller are very large and are out of the graph range. Adding

a gravity feedforward term does not help very much, and the trajectory errors for

Controller 2 are also very large. This was expected since gravity feedforward is a

static correction to Controller 1, and the dynamic effects dominate the response for

high speed movements. Modifying the first controller by adding a velocity reference

signal improved the response greatly. As with Controller 2, adding a gravity feed-

forward term did not reduce the trajectory errors very much, and influenced mainly

the steady state errors for joints 2 and 3.

The full feedforward controller reduced the trajectory errors significantly for

Joints 1 and 2, with peak errors of only 0.330 and 0.640, respectively. For Joint 3,

the feedforward torques did not help because of the light inertia and the dominance
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Figure 4.2: Reference trajectory for Joint 1
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of unmodelled dynamics in the motor and in bearing friction. The high feedback

gains make this joint somewhat robust to these unmodelled dynamics; yet, the

trajectory errors could not be reduced below 1.40 with the feedforward torques
based on the ideal rigid body model of the link.

4.2.2 Computed Torque Controller

In this section, some preliminary results are presented for the computed torque

method implemented on the DDARM. In this implementation, the analog servos

are disabled, and the feedback computation is done digitally by one Motorola 68000
based microprocessor using scaled fixed-point arithmetic. Written in the C lan-

guage, the controller, including the full computation of the robot dynamics, runs

at a 133 Hz sampling frequency. Although further improvements in computation

time are possible, this speed was adequate in demonstrating the efficacy of dynamic

compensation. The details of this implementation are discussed in (Griffiths, 1986).

A similar fifth order polynomial trajectory as in the previous section was used

for this experiment. Figure 4.4 shows the trajectory errors for three controllers:

the digital PD controller, the feedforward controller using a digital servo, and the

computed torque controller. The computed torque and the feedforward controllers

both show a significant reduction in tracking errors for Joints 1 and 2 compared

with the PD control, with no clear distinction between feedforward and computed

torque. With the addition of dynamic component, the peak tracking errors for
Joint 1 are reduced from 4.4* to 2.20 and for Joint 2, from 3.5* to 2.00. As before,

the trajectory errors for Joint 3 were not reduced by the computed torque or the

feedforward controller. Again, this seems to indicate that the model for the third

link may not be very good.

The trajectory tracking performance of the computed torque controller is not as

good as that of the analog feedforward controller of the previous section. The main

reason for this is the slow sampling frequency (133 Hz) of the digital controller, as

compared to the I KHz sampling frequency at which the reference inputs were given

to the analog servos. Improvements in the computation time should also improve

the tracking performance of the computed torque controller.
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4.3 Conclusions

In this chapter, I presented some experimental results of using an estimated dy-

namic model of the manipulator for dynamic compensation via feedforward and

computed torque control methods. The results indicate that dynamic compensa-

tion can improve trajectory accuracy significantly and that the estimated rigid body

model of the manipulator is quite accurate and adequate for control purposes for

Joints 1 and 2. The unmodelled dynamics of the light third link, including the

motor dynamics and friction, are significant and yield larger trajectory errors than

at the other two joints. Therefore, for Joint 3, it may be necessary to use a more

complete model to improve trajectory following.

The results of the digital implementation of the feedforward and computed

torque controllers were not as good as the hybrid feedforward controller. This

indicates that if a robot was being used solely for free space movements without

significant variation of its loads, then a hybrid controller using an independent ana-

log servo for each joint may be quite adequate. A hybrid controller, however, is not

flexible, and cannot handle varying loads or interactions with the environment.

~~1
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Chapter 5

Dynamic Stability Issues in Force
Control

5.1 Introduction

It is necessary to make robots interact with their environments to make them ver-

satile. This is especially true for assembly applications with tight tolerances since

robots may not have the necessary positional accuracy or have some unmodelled

misalignment. Vision will be a part of the solution for such problems. But even

then, robots need to interact with the environments in a stable way. This is the

subject of force or compliance control studies that have been getting much atten-
tion recently in the robotics field. However, in all of the active continuous feedback

implementations mentioned in Chapter 1, researchers have found that their systems

could not deal with stiff environments satisfactorily (Whitney, 1985; Caine, 1985).

Previous implementations have been either unstable or very slow. The slow perfor-

mance is due to high joint damping required to maintain stability during contact

between the tip of the robot and its work piece, i.e. during interaction with a

stiff environment. Without such high damping, researchers have observed a very

unstable behavior in a force-controlled robot.

Stability is a condition that must be satisfied with any control systems. Yet,

often in the area of robotics, the stability problems have been neglected and treated

only as an afterthought. Only during the last two years have there been papers
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discussing the stability problems associated with force control (Whitney, 1985;

Roberts, 1984, 1985; Kazerooni, 1985, 1986a, 1986b, 1986c; Eppinger, 1986; Wla-

sich, 1986). Both Whitney (1985) and Roberts (1984) presented stability analysis

with respect to the sensor stiffness and showed that a soft force sensor is necessary

in order to achieve a stable behavior with stiff environments. Kazerooni (1985)

has presented a stability analysis and design method for impedance controller using

eigen structure assignment. But his algorithm is quite complicated, and it is not

clear if it can be implemented for a multi degree of freedom manipulator. His imple-

mentation results have so far been on a single joint manipulator. Wlassich (1986)

implemented an impedance controller on a two-link experimental manipulator. Us-

ing the impedance control method, it may be desired to make the manipulator

behave as if it were a smaller mass (or inertia) than the actual. However, Wlassich

discovered that unless the desired mass was larger than the actual mass, the ma-

nipulator became unstable against a stiff environment. Eppinger's analysis (1986)

is similar to that contained in Section 5.2, but he does not come to any conclusions

for remedying the stability problems.

The goal of this and the next two chapters is to present simple analyses to

understand the stability problems associated with force control implementations

and then to present some design methods that would remedy those problems. This

chapter focuses on the dynamic instabilities that are caused by the interaction of the

dynamics of the robot with its environment. Since these problems occur whether

we are dealing with a single degree of freedom manipulator or a multi degree of

freedom manipulator, a simple one link manipulator is used in the analyses. The

analyses are then verified by single link experiments on the third link of the direct

drive arm. Multi-link cases are discussed in Chapters 6 and 7.

After presenting the dynamic stability problems in Section 5.2, three different

solutions are suggested to improve the dynamic stability of a force-controlled ma-

nipulator. The first method, use of compliant covering, is similar to the results and

suggestions of Whitney (1985) and Roberts (1984). The second method, adaptation

to the environment stiffness, is new and has not been reported before. The third

method, use of joint torque control, has been mentioned by Wu and Paul (1980)

and by Luh, Fisher, and Paul (1983); but their results were used mainly to reduce

joint friction in a position controlled system, and not in active force control.

As mentioned in Chapter 1, the direct drive arm is an ideal device for testing
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Figure 5.1: Model of the robot and the environment

these ideas for the following reasons:

" the dynamics are ideal since there is little friction and no backlash,

" torques to the motors can be measured and controlled accurately.

5.2 Stability Problems

In this section, I will discuss the dynamic stability problems of a force-controlled
robot. Two types of force control methods are used as examples, although the
problems are general and not limited to these two. At first, the stability problems
will be analyzed using a simple model of the robot and then demonstrated by
experiments on the direct drive arm.

5.2.1 General Stability Analysis

To simplify the analysis, I will consider a very simple model of the robot and the
environment (Fig. 5.1). The robot, in contact with its environment, is modelled as
a mass m, and the environment plus the wrist force sensor is modeled as a simple
spring of stiffness kE. Then the dynamic equation of the above simplified system is,

V

f - kEz = mX (5.1)
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Stiffness Control For a stiffness controller (Salisbury, 1980) of the above

model, the control input is given by,

f =kp(Xd - x) + k(d - ) + k1(k,(Xd - ) - f,.) (5.2)

=kp(Xd - X) + k.(:d - i:) + kf (kp(Xd - X) - kEX)(52

where kp is the desired stiffness, k. is the velocity gain, and kf is the force feedback

gain. Substituting (5.2) into (5.1), the dynamics of the total controlled system is

described by,
m! + k,: + (1 + kf) (kp + kE)z = input terms (5.3)

Impedance Control An impedance controller (Hogan, 1985a, 1985b, 1985c)

results in a similar form as (5.2), but with kf depending on the desired apparent

mass. The control equation of an impedance controller, discussed in (Hogan, 1985b)

for the simple one degree of freedom robot, is as follows:

" Desired impedance:

md + k.(i - id) + kp~( - rd) = (5.4)

" Control Input:

f- (kp xd - z) + k. (id - ci)) + (1 - fe.t

(p(d- X) + k. (i - i)) + (1 - -kEx.(5)

md is the desired mass, k. is the desired damping, and kp is the desired stiffness.

(5.5) shows that the force gain kf is directly related to the desired mass Md.
k = (1- M) (5.6)

md

Therefore, if md < m, then k! is negative and large. If mr = m, then the force

sensor feedback is disabled. If md > M, then k/ is small but positive. This positive

force feedback, however, does not cause instability because of the -kEX term already

present in the open loop system (5.1). The total system with the above impedance

control is described by

m! + -k. + -(kp + kE)X = input terms (5.7)
md md
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Figure 5.2: Error model for unmodelled dynamics

This equation is almost identical to (5.3) for the stiffness controlled system. In both

cases, the closed loop equation includes a position term z which is multiplied by

the effective stiffness of the environment kE and the force feedback gain kIf. In fact,

this form of equation will result for any type of force control methods.

The system described by (5.3) or (5.7) is a stable system since all the poles have

negative real parts given positive gains, k. and k.. In free space or in contact with a

soft environment, kIC would be small, and the manipulator will behave satisfactorily.

But if kE is large, i.e. kC >> kp, the system will be undesirably underdamped if k.

was computed with only kp in mind, neglecting the large kE term. The combination

of the force sensor and the environment is approximately a very stiff spring, and

from the stability point of view, force feedback is a very high gain position feedback.

Yet, given the above completely linear and perfectly modelled system, this is still

a stable system since the poles are still on the left hand plane. However, real systems
are non-linear, and they are never perfectly modelled. In such real situations, the

system may actually be unstable in presence of unmodelled high frequency dynam-

ics. Figure 5.2 shows the nominal closed-loop model of a force-controlled system

and the use of multiplicative error model to represent the unmodelled dynamics.

E(s) is not completely known and is only an approximation to the unmodelled dy-

namics. In a single input single output system, for stability robustness with the

above error model (Lehtomaki, 1982) shown in Figure 5.2, we need:

IE(,s) < 11 + G-'(s)l (5.8)

This relation is derived in Appendix 2 from the Nyquist criterion for stability. For

my simple model of combined manipulator-environment system, the loop transfer
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function is: ,k. + k,(1 + k) + kkf (5.9)

G(s) = =2 + kE

The plots of IE(s)I and I1 + G-1 (s)I for different values of ks are shown on Figure

5.3. The plot of IE(s)1 is a hypothetical one, but its shape is typical of the high

frequency unmodelled dynamics (Kazerooni, 1985). The figure shows that for a

small kg, which still gives overdamped response in free space, JI + G-(s)I has a

large dip in the high frequency region for large values of kE. Since the unmodelled

dynamics are greater for higher frequencies, this results in a non-robust system. In

fact, with E(s) as shown on the figure, IE(s)I > II+G-1 (s)I for kg > 105 Nt/rn, and

this system then may be unstable for contact with such stiff environments. But for

.1i a soft environment, the diagram shows that the system remains stable in presence
:of unmodelled dynamics. Such behaviors have been noticed by the researchers who

have tried implementing force control for a manipulator.

In summary, there are three problems affecting stability for a robot interacting

with its environments. They are:

1. force sensor feedback is essentially high gain position feedback,

2. there are always unmodelled high frequency dynamics in the robot system,
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3. the robot must deal with stiff environments.

In the next two sections, I will verify this general simple analysis with an example

and also by implementation on the MIT Serial Link Direct Drive Arm.

5.2.2 Example of Unmodelled dynamics
The general analysis of the previous subsection is verified in this section with a

slightly more complex model of a robot. Even single degree of freedom robots are

not completely rigid and there are always flexible modes in the system. Adding a

flexible mode to the simple system (Fig. 5.1), a fourth order model of the robot in

contact with the environment is shown in Figure 5.4.

With this system, if a stiffness controller or any other force controller was

designed straightforwardly neglecting the flexibility, thus treating it as a simple

one mass system, the root locus of the closed-loop system with stiff environment

(kE = 8 x 10 N/m) would behave as shown in Figure 5.5. As the force gain kf is

increased, the poles move to the right half plane and the system becomes unstable.

When the robot is in contact with a soft environment (k_ = 1Ws N/m), the closed-

loop poles do not move to the right half plane for the same force gains as shown

in Figure 5.6. These two cases agree with the behavior predicted by the general

analysis of the previous section.

5.2.3 Experimental Verification of Instability

In this section, experimental results on the third link of the direct drive arm are

presented to verify the analyses of previous sections. The third link is being con-

trolled in a pure force control mode as shown on the block diagram of Figure 5.7.
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Figure 5.6: Root locus for soft environment as k! varies
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F mad + K + ROBOT K0

Figure 5.7: Simple Force Controller with K1 = 0.222

The Barry Wright FS6-120A 6-axis force/torque sensor was used to measure the
contact force. As the block diagram shows, the tip force sensor feedback is a pure
gain and has no dynamic compensation. For the results shown in this section I did

not make any attempt to reduce the instabilities that were present. Such efforts are
discussed in the Sections 5.3, 5.4, and 5.5.

Figure 5.8 shows the step responses of the simple force controller on three differ-

ent surfaces using same gains and inputs. The negative bias shown on the top plot
is from an offset drift in the force sensor and should be ignored. As expected, the
robot becomes unstable when it comes in contact with the stiff aluminum surface.
The spikes on the force data are produced as the robot bounces on this surface.

The stability is improved when it is in contact with a rubber surface. Since the
rubber used in this experiment is a hard rubber, it is still quite underdamped. But

as the root locus (Fig. 5.6) of the section 5.2.2 indicated, the closed loop poles are
still on the left hand plane, and the robot is stable and remains in contact with the

surface. The last plot of Figure 5.8 is the force step response of the robot in contact
with my fingers. Since my fingers (and the hand) are very compliant, the robot is
stable under the simple force control.

This and the last sections have demonstrated some of the dynamic stability
problems associated with a force-controlled system present even in a single joint

system. In the next three sections, I will present several methods of remedying

those stability problems.
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5.3 Compliant Coverings

As shown in equations (5.3) and (5.7), the force sensor feedback is essentially a
position feedback with the gain dominated by the stiffness kE, representing the
effective stiffness of the force sensor and the environment. In general, the stiffness

of a wrist force sensor, k,, is very high so that it has a good force resolution and

dynamic range. Since the sensor mass is typically small, the effective stiffness kE

is a result of serial combination of the sensor stiffness k, and the environment

stiffness k6,.. Then, to reduce kE, one can either make the sensor soft or make the

environment appear soft by attaching a compliant covering to the contact surface.

Either approach gives the same result and the root locus of such a system will have

the pattern shown in Figure 5.6 of Section 5.2.2. The experimental result for such

a system can be seen in Figure 5.8 in the force step response on rubber or finger

surface.

Whitney (1985) and Roberts (1985) have both suggested using soft sensors. But

that may not be very practical since the softer the sensor is, the more the sensor

will bend. Then the dynamic range of the sensor will be limited and it would also

be difficult to control the tip position accurately due to large sensor deflections

(Roberts, 1985). On the other hand, if a thin compliant covering is used on top of

the force sensor, the environment will always seem soft to the force controller. This

method preserves the large dynamic range of a stiff force sensor and also improves

stability.

Using compliant coverings is not unlike how human arms are made. In fact, the

skin on our arm helps us greatly in force control. It absorbs the energy during the

collision phase of a contact with a stiff environment and it also acts as a contact

sensor to give us some relative position information. In that respect, it would be

even better to make the compliant coverings to be the tactile sensors of the type

discussed in (Siegel, Garabieta, and Hollerbach, 1986).

5.4 Adaptation to the Environment Stiffness

Another method in dealing with a stiff environment is to somehow estimate the

environment stiffness and then to incorporate the knowledge of the environment

in the controller to achieve a stable and robust behavior. One simple method of
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Figure 5.9: Fourth order model of the robot and the environment

incorporating such knowledge is to vary the velocity gains according to the environ-
ment stiffness and damping, so that the system remains stable without being too
sluggish. The problem, then, is first to identify the dynamic characteristics of the
environment. Here I will present two methods, one simpler than the other.

Let's consider a fourth order model for a situation where a manipulator is in
contact with its environment (Figure 5.9). The force sensor is modelled as a spring
of stiffness k,. The environment is modelled as a spring, a damper, and a mass.
The mass mE is the manipulator load, a tool, for example. In practical situations,
if the system becomes unstable, the manipulator will lose contact with the environ-

ment. In this section, however, I am considering a simplified situation where the
manipulator remains in contact. The former situation is more complex and will not
be addressed in this thesis.

The behavior of the system in Figure 5.9 is described by,

A 0 0 -k, 0 P1 1
PE 0 -bE/mE ko -kE PE + 0f (5.10)

io 1/M1 -1/mE 0 0 X. 0
:EE 0 1/mE 0 0 XE 0

where

Pi = mI 1 = M 1 (° -+ iE), PE = mEVE =Mri

and x, is the displacement of the sensor spring. Ignoring the viscous damping in
the sensor, the equation for the dynamics of the environment only is decoupled as,

f k.x, = mEE + bEXE + kEXE (5.11)
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The measurement of f. is available using a wrist force/torque sensor. Although XE

cannot be measured directly, it is related by,

Xrobot - X0 : Xj (5.12)

where x,.bo= is the movement of the manipulator from the point of contact with the

environment and x. = f/k,. However, typically we will not be able to meabure the

other state, iE.

5.4.1 Least Squares

One method of identifying the dynamics of the environment is to use a least squares

algorithm. If the measurements of XE and iE as well as f. and XE were available,

then we can use straightforward least squares algorithm on the continuous time

equation (5.11). However, as discussed above, at best we only have measurements

of f, and XE. In this situation, the continuous time equation for the dynamics of

the environment can be transformed to a discrete version by a number of different

methods (Franklin and Powell, 1980). Then, using least squares method, the co-

efficients for the discrete equation can be estimated. The actual continuous time

parameters can then be obtained from these discrete coefficients by simple alge-

braic transformations. In the rest of this section, these steps are derived, and both

simulation and experimental results are presented.

Derivations

The Laplace transform of the continuous time equation (5.11) for the dynamics of

the environment is

f,(s) = k.X,,(s) = (ME$ 2 + bEs + kE)XE(s). (5.13)

For the bilincar transformation method of converting a continuous time system to

the discrete time domain, the relation between s and z is given by

( z-1) (5.14)

Substituting (5.14) into (5.13),

XE(s)_ 1 + 2z' + z-' (5.15)
f,(s) ao + ai z -1 + a 2 z 2
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The difference equation corresponding to (5.15) is

f.[n] + 2f.[n - 11 + f.[n - 2] = aox.[n] + atx.[n - 1] + a 2X.[n - 2]. (5.16)

Then, using a well documented recursive least squares method (Liung, 1983), the

coefficients ao, a,, and a2 can be estimated. The continuous time parameters, then,

are computed from the estimated coefficients by the following algebraic relations:

T
bE = -(a 0 - a2)

4

mE = T (ao + a2 - a,)
1 8mE

kE = (a, + (5.17)2 T 2

Since the bilinear transformation is not an exact transformation, the above deriva-

tion is also approximate. But for fast sampling time, the transformation is quite

accurate.

Simulation

The simulation results of the recursive least squares estimation is shown in Figure

5.10. The signal is a step response with some random noise and the sampling

frequency is 200 Hz. As shown in the figure, the stiffness estimate reaches the actual

value quickly, within 0.05 second or 10 samples. The damping estimate reaches the

final value in 0.1 second. The estimate for the mass settles to the final value after

0.2 second, and there is a significant bias error in this estimate. These behaviors are

expected. The bE and mE parameters are mainly affected by the XE and xE signals

respectively, whose measurements are not available directly. Therefore, the discrete

algorithm is essentially numerically differentiating and double differentiating the XE

measurements in order to arrive at estimates of bE and mE. The estimates for these Pq
parameters then should not be as good as the estimate of kE. For stability, the N,

stiffness parameter is the most important and as shown in the simulation results,

it may be possible to estimate it quickly enough for the controller to adapt to the

changing environment conditions.

Experiments
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Estimation using the least squares method was tested on two different surfaces,

aluminum and rubber. Figures 5.11 and 5.12 show the step force responses for one

link robot, the position displacements, and the estimation results of the effective

environment stiffness of an aluminum and a hard rubber surface, respectively. The

measurements of the position displacements were from the resolver at the joint.

Since the stiffness of the sensor is very high (>> 10 6N/m), I neglected the deflec-

tions of the force sensor in the position measurements.

The results show that the estimated value of stiffness for the hard rubber surface

is 60% of that for the aluminum surface. Although the actual stiffness of aluminum

may be much higher than the estimate, the effective stiffness of the aluminum sur-

face and the end effector (a bearing attached to sensor) together is lower than the

actual stiffness. In control, it is this effective stiffness that is important for stability

considerations. The estimates for the mass and the damping were not consistent

and are not shown. As discussed in the simulation section, this was expected since

those estimates depend on the derivatives of the position data. For the examples

presented, the positional displacements are too small for the derivatives to be ac-

curate. With the 16 bit resolution resolver, the maximum displacements are only

2.5 bits for aluminum and 3.5 bits for rubber.

5.4.2 Adaptive Observer

For the environment equation (5.11), an adaptive observer technique (Narendra

and Kudva, 1974; Narendra and Valavani, 1976; Shih, 1985a) may also be used

to estimate the mass mE, the stiffness kE, and the damping constant bE of the

environment. Actually mE may already be known through load identification, but

I will continue to treat it as an unknown in the following analysis. Following the

method presented by Narendra and Kudva (1974), a stable adaptive observer can

be formulated for the equation (5.11). Dividing by mE, (5.11) can be rewritten as,

Df. = E + PE + flzE (5.18)

where
_1 bE kE

ME ME ME

Define additional state variables y and w as,

-AY + X
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t= -- w+f. (5.19)

In terms of the new state variables, (5.18) can be written as,

XE = -#x3 Z - Ily + Dw + Xxs + X(P - X) (5.20)

The derivation of (5.20) is in Appendix 3. Equations (5.19) and (5.20) together
represent a non-minimal realization of the original equation (5.18). In a matrix
form, this equivalent non-minimal realization can be written as,

= 1 -- 0 y +[ 0 ]. (5.21)

tb 0 0 -A w 1

All of the states in (5.21) can be either measured or computed by (5.19). Then,

following the structure of (5.20), the adaptive observer equations are formulated.

XE = pxE - fly + iiw + \XE +r y~ - o:XB- XE)

e = E -XE

~~3= -Ylez-.

al = -Yey -/j > 0 (5.22)

D5 = - Iysew
This adaptive observer can be proved to be stable using Lyapunov analysis, given
sufficiently rich inputs. There exists a discrete version of the above formulation
(Kudva and Narendra, 1974) and also other forms of adaptive observer that may
be useful for this application (Shih and Lang, 1985a, 1985b).

There may be other methods for identifying the environment dynamics. One
possible method is to estimate the environment stiffness kE by estimating the fre-

quency of oscillation caused by interaction with the environment. The frequency
information may be obtained by taking the FFT of the force measurement fa.

5.4.3 Feasibility

The above methods show that it is theoretically possible to identify the dynamics
of the environment in order to use them in the control law. However, as shown
in the experimental estimation results, uz'ng practica! sensors, we mha. not have
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enough joint position sensor resolution to measure xE accurately. Assuming that

the force sensor is much stiffer than the environment, for a 16 bit resolution joint

angle measurements and 0.5 m lever arm, a static analysis (f = kEZE) shows the

following upper limits in the stiffness of an environment that can be estimated:

force kE

IN 2 x 10 4 N/m

ION 2x105 N/m

This shows that even for rather optimistic 16 bit resolution measurements, unless the

contact force is undesirably large, stiff environments cannot be identified accurately.

This characteristic may limit the usefulness of this approach in dealing with stiff

environments.

5.5 Joint Torque Control

I have so far assumed that a force-controlled system uses a high gain feedback of

the signal from a tip force sensor, which i3 typically characterized as a very stiff

spring. From the stability point of view, feedback control using the output of such

a force sensor is equivalent to a very large gain position feedback which can lead

to instability. Stability can be improved if the loop gain is reduced. Adding a

compliant covering, as discussed in Section 5.3, was one such approach. Lowering

the force feedback gain also reduces the loop gain but also has the undesirable effect

of deteriorating the force resolution. Another useful approach is to achieve force

control without using the tip force sensor in the feedback loop, hence removing the

high gain component from the closed loop system. Instead, the end effector force

can be controlled by relying on the measurements of and the ability to command

joint torques accurately. The loop gain is 0 since such a control method is an

open-loop control from the point of view of interaction forces at the end effector.

However, in practical systems, a closed-loop torque servo is implemented at each

joint so that the joint torque can be specified accurately.

This approach has been investigated previously by Wu and Paul (1980) and

also by Luh, Fisher, and Paul (1983) using strain gauges on the motor shaft of a

geared system, but they did not use their experimental joint torque control method

to perform any active force control. Instead, the joint torque feedback was used
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mainly to reduce frictional effects at the joints for the Stanford Arm (Luh, Fisher,

and Paul, 1983). For the direct drive arm, since there is very little friction at the

joints, the measurements of joint torques can be obtained by measuring the motor

currents. In Chapter 3, I used this capability to compute joint torques in order to

estimate the link inertial parameters.

Wu and Paul (1980) presented a good comparison between using wrist force sens-

ing and joint torque sensing in implementing force control. Wrist sensing provides

accurate force/torque measurements at the hand; but because the robot structure

is inherently a low bandwidth flexible system and the sensor is situated at the end

of this structure, a high gain feedback will produce instability as shown in Section

5.2. Therefore, only a slow closed loop system can be implemented stably using

a wrist sensor. On the other hand, since joint torque sensors are situated before

the low bandwidth robot structure, a high bandwidth torque inner loop can be im-

plemented around each joint. But since the sensors are not at the hand, the hand

forces and torques cannot be inferred as accurately as the wrist sensing.

Since both the wrist sensing and the joint sensing have good and bad features,

one reasonable method is to combine the two methods to provide a stable high

bandwidth force-controlled system. The high bandwidth open-loop joint torque

control with inner torque servo loop will provide stability and fast response, and the

lower bandwidth outer loop with wrist force sensing will provide extra accuracy. To

the best of my knowledge, this method has not been implemented before, probably

due to the lack of a suitable manipulator. In the direct drive arm, one has this

capability since torques can be commanded quite accurately at each joint.

In the rest of this section, the stable property of an open-loop force controller

using joint torque sensing, is discussed in more detail, and the results of one-link

force control experiments are presented demonstrating the performances of using

joint torque sensing and also the combination of joint torque and wrist force sensing.

5.5.1 Dominant Pole

Without the wrist sensor in the force feedback loop, the dynamics of a simple

manipulator in contact with its environment is given by

f -kEX -m +bi (5.23)
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If this system is controlled purely by commanding the force or the torque at the

joint, i.e. in open loop mode, the response should be very underdamped since kE

may be high for a stiff environment. One simple classical compensation method

of improving stability is to create a dominant pole in the loop transfer function

(Roberge, 1975). This can be done simply by putting a low-pass filter in the forward

path so that
= f ,a (5.24)

s+a

where r is the actual input torque (or currents) to the actuator and a is much

less than the resonant frequency of the original system. Then, the total system

dynamics is described by

X(s) = f ( a)(8+8kE (5.25)x~s) = + a rns2 + b~s + k- "

Because of the dominant pole at 8 = a, this compensated system behaves in a much

more stable manner despite the two high frequency underdamped poles. Figure

5.13 compares the step responses of the above system (5.25) to the original system

without the dominant pole (5.23).

For real actuators, the explicit low-pass filtering of the input signal may not

even be necessary, since the combined system of t!he amplifiers and the manipulator

structure behaves essentially as a low-pass filte, .. For the MIT Serial Link Direct
Drive Arm, there is a an analog current loop at each amplifier to the motor which,

together with the rotor inertia, has the cutoff frequency at approximately 30 Hz.
Because of this low-pass characteristic, explicit low-pass filtering was not necessary

to achieve stability. However, even for the direct drive motors, there are some

nonlinear characteristics as deadzone for small torques (Asada, Youcef-Toumi, and

Lim, 1984), cogging, and other ejects due to the imperfect commutation circuitry.
Some of these nonlinear characteristics can be reduced by implementing another

torque feedback loop at each joint. As discussed in Chapter 3, for the DDARM
the torque at each joint is computed from the three phase currents by the following

relation,

r = KT(I. sin(nO + offset) + I sin(nO + 120 + offset) + I, sin(n + 240 + offset))

(5.26)
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WITHOUT DOMINANT POLE

WITH DOMINANT POLE

Figure 5.13: Step responses of (5.23) with and without the dominant pole
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where

I 600 for Joint 1
n for Joints offset, -33.3 for Joint 2

9 for Joints 2 and 3 -108 for Joint 3

Figure 5.14 shows the block diagram of the joint torque servo and also the com-

parison between the commanded and the measured torques for the third joint of

the DDARM with and without the added joint torque feedback. The pole of the

lag filter shown in the figure is separate from the dominant pole discussed above.

The dominant pole refers to the low pass structure of the whole actuator system,

including the torque servo, amplifier, and the motor. As the plots in Figure 5.14

show, torques can be commanded accurately at each joint.

The analysis of this section shows that the force control via joint torque sensing

is stable and well behaved, due to the open-loop structure and the dominant pole

created either explicitly or inherently by the amplifier and the robot structure. But

as discussed earlier, it is also desirable to include the wrist force sensing to improve

the accuracy of the force control system. In such a case, using the same analysis as

above, one should also use a low pass filter in the control loop involving the wrist
force sensor feedback, thus creating a dominant pole. The pole of this wrist sensing
loop should be at a much lower frequency than the pole of the joint torque path, so

that the stability is not affected. Then, the combined multi-feedback loop system

should have the stability and the high bandwidth from the joint torque control

mechanism, and the steady state accuracy from the wrist torce control mechanism.

The block diagram of a such a system is shown in Figure 5.15.

5.5.2 One Link Force Control Experiments

The two suggested stable force control methods were implemented on the third

link of the DDARM. The first method, using joint torque sensing only, is an open

loop method of commanding the appropriate torque at the joint and relying on the

dominant pole provided by the joint torque servo and the amplifier to keep the

system stable in contact with stiff environments. In this case the wrist force sensor

is used only to record the force data at the tip of the robot and is not used in the

=The offsets are due to abnormalities in the commutation circuitry as well as offsets in resolvers.
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Figure 5.15: Structure of a general force controller

feedback. The second method uses both the joint torque sensing and the wrist force

sensing as shown in Figure 5.15. The two methods are summarized below.

1. Using joint torque sensing only:

r = f&,ad . Is, 13 = 0.4445 m

2. Combination of joint torque sensing and wrist force sensing:

faired -1 + kf ( (fd,.ired - fmajured)

\s + bj-faard

The third link has an explicit joint torque feedback loop shown in Figure 5.14 im-
plemented digitally at 500 Hz. The sampling frequency of 500 Hz was used through-

out the one link experiments.

Force Step Response 7

In Figure 5.16, a stable force step response of the second method is compared to the

unstable response of a simple pure gain force feedback without the dominant pole

for the robot in contact with a stiff aluminum strface. The negative bias shown on

the top plot is from an offset drift in the force sensor and should be ignored. The

plots are untouched without any low-pass filtering of the data to reduce the noise
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for plotting purposes. As the figure shows, although there is a significant amount

of noise in the force data, the step response of the compensated system is definitely

stable, whereas the response of the system without the proper compensation is

unstable and the manipulator bounces on the environment surface.

Figure 5.17 shows the force step responses of the two stable methods discussed

above. As expected from the analysis, there is no noticeable difference in dynamic

behavior between the two controllers; but the second method, combining the joint

torque sensing and the wrist force sensing, has much better steady state accuracy.

For either method, the accuracy is worse for the lower force inputs since the nonlin-

ear characteristics (suc& as dead zone And cogging) of the motor and the amplifier

for small torque leve'- are more severe (Asada, Youcef-Toumi, and Lim, 1985). The

commanded force levels (10 N and 15 N) used in the experiments are less than 2%

of the capacity of the DDARM, which can exert greater than 500 N of force at its

tip.

Performance Tests

Step inputs are not really the best inputs in testing the performance of force con-

trol methods. Their high frequency contents and the large initial torques that are

required at the discontinuities can excite undesirable structural modes. But it does

qualitatively test stability. For evaluating performance of force controllers, better

methods are:

1. Sine wave force command with the manipulator in contact with the stationary

environment,

2. Constant force command with the manipulator in contact with the environ-

ment moving in a sinusoid trajectory.

Both of these test inputs may give us information about bandwidth.4
Sine Wave Force Command The responses to a 1Hz sine wave force com-

mand are given in Figure 5.18 for the two stable methods. Similar to the step

response results, the accuracy for the second method is much greater than the first

method. But again, for either method, neglecting the bias errors, the manipulator

follows the sine wave command faithfully. Figure 5.19 shows the responses of the
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combined method to sine wave force commands of frequencies up to 20Hz. Al-
though there is a noticeable lag in the measured data for higher frequencies, the

manipulator still has no trouble followi- Z the sine wave command. Therefore, us-
ing the usual definition of bandwidth (frequency at which the output magnitude is
reduced by 3dB from the DC value), the bandwidth tested in this way is greater

than 20Hz.

Constant force command with positional disturbances The second per-
formance test, a constant force command while the contacting environment is mov-
ing, is made with an eccentric cam on a gear motor as shown in Figure 5.20. The

circular cam is attached to the gear motor at a point 0.5 inch off from the center

providing an approximate sine wave positional disturbance to the force controller.
The responses of the two methods are plotted on Figure 5.21. The second method
is able to follow the cam accurately with the desired force. Neglecting the high

frequency noise, the low frequency variation in the measured force is within 10% of
t e desired 12.5N. Higher cam speed resulted in larger variations.

It is difficult to define a measure of bandwidth for this test because this test is

really a disturbance rejection test. The movements of the cam provided a positional
disturbance to the force-controlled system as shown in the simplified block diagram

of Figure 5.22. Therefore, a reasonable measure of this disturbance rejection is the

frequency wd, at which the variation is 10% (5.27).

fo=a - f. 1 =10% (5.27)

Under this measure, this system is well behaved up to approximately 0.8Hz. The
response of the first method is not as accurate at this cam speed, suggesting a

slightly lower frequency limit.

The frequency limit determined by the positional disturbance is much lower
than the bandwidth determined by the sinusoid force trajectory testing. This is

not surprising since for the sinusoid trajectory tests, the movement of the link is

infinitesimal; whereas for the cam tests, the controller has to move the large link

inertia over a significant distance. It is not, however, clear which measurement

of performance is more useful. For applications that involve following undulated

surfaces, the positional disturbance test is more relevant. But for peg-in-hole types
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of applications in which the movements are very small, the sinusoid trajectory test

may be more relevant.
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Chapter 6

Kinematic Stability Issues in
Force Control

6.1 Introduction

The dynamic stability problems discussed in Chapter 5 can occur whether the ma-

nipulator consists of simply one link or multi-links. For a multi-link manipulator,

there is typically some type of coordinate transformation either at the planning

stage or in the active feedback computation path. If the transformation is in the

Afeedback path, then it will have some effect on the dynamics of the closed-loop sys-

tem. In the worst case, the kinematic transformation in the feedback path may even
make the system unstable by making the closed-loop poles move into the right half

s-plane. This chapter focuses on these issues of kinematically induced instability.

The purpose is not to prove any type of stability but instead to prove instabilities

by counter examples against stability.

The simplest coordinate system to use in controlling a manipulator is the joint

coordinate system. A stable and well behaved response can be obtained using even

very simple control algorithms in this way. But the simplest coordinate system for

* humans to visualize and plan tasks for a manipulator is the cartesian coordinate

system. There are several ways to control a non-cartesian robot as a polar manip-

ulator or a revolute manipulator in cartesian coordinates. In pure position control

mode, the most widely used method is to compute the inverse kinematics at the tra-
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jectory planning stage and then use joint coordinates for the real time control. For

compliance or force control, the algorithms must deal with the interaction forces

as well as the desired positions and cannot simply execute the preplanned joint

trajectory. As stated in the earlier chapters, there are several well known carte-

sian compliance control algorithms. They are summarized below, and their main

structures are shown on Figure 6.1.

Hybrid Control (Raibert and Craig, 1981):1 The cartesian positions and the

velocities are computed from the joint positions and velocities, respectively,

by direct or forward kinematics. Neglecting the integral terms,

S = KJ-S(xd - x) + KJ- 1 S(* 4 - x) + KJT(I - S)(fd - f) (6.1)

where S is the diagonal selection matrix whose (i, i) entry is 1 if ithaxis is to

be position controlled, and 0 if it is to be force controlled.

Resolved Acceleration (Luh, Walker, and Paul, 1980b; Khatib, 1983): In the

original paper by Luh, Walker, and Paul, the resolved acceleration method

was formulated only as a dynamic cartesian trajectory controller. But with a

simple modification, this method can be used to control force and position for

different cartesian degrees of freedom as the hybrid controller. The modified

resolved acceleration controller is given by (6.2).

1 = M(q)J-(q)[Sx, - h(q, 4)] + b(q,4l) + g(q) + JT(I - S)f (6.2)

xL = Xi + K,(kd - *) + K,(xd - x), h(q,) = (q)l

f is the command vector for active force control, which is the only modifi-

cation from the original formulation by Luh, Walker, and Paul. As shown in

Appendix 4, Khatib's operational space method is essentially identical to this

modified resolved acceleration controller. The impedance control algorithm in

(Hogan, 1985b) also fits under the category of resolved acceleration method.

The only difference is that the force gain is a function of the desired mass for

the impedance controller.

'Actually all three of the methods discussed are hybrid controllers in that all of them can be
formulated to control position and force for different axes. However, for convenience, when the term

the hybrid control is mentioned without any other clarifying description, I am always referring to

the method of Raibert and Craig.
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Figure 6.1: Block diagrams for the hybrid, the stiffness, and the resolved accelera-

tion controllers shown without the velocity terms
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As in the Raibert and Craig's method, the cartesian positions and the ve-

locities are computed from the joint positions and velocities, respectively, by

direct or forward kinematics. However, this controller includes the complete

rigid body dynamics of the manipulator, so that if the dynamic modelling were

to be exact, the motion of the manipulator would be completely decoupled

at the end effector in cartesian coordinates. Then, the response under the

pure position control mode would be that of a unit mass along each cartesian

degree of freedom. For example, the resulting behavior in the x-axis is

, + k,,3?r + kp2z. = 0, where z = zxd - x. (6.3)

Stiffness Control (Salisbury, 1980): The desired cartesian trajectory is trans-

formed to joint coordinates at the trajectory planning stage.

= JTKJ(qd - q) + K.(4d - 4) (6.4)

Although the kinematic errors are computed in joint coordinates in Salisbury's

original paper (1980), it is also possible to implement stiffness control by

computing the errors in cartesian coordinates as in the hybrid control. Then

the slightly modified stiffness control algorithm is:

T = JT(Kp(x d - x) + K,(kd - *)) (6.5)

Since the stiffness, not the pure force, is to be controlled, the above controller

equations are shown without any force feedback term. A force term, how-

ever, can be added if the stiffness matrix alone does not provide enough force

resolution or if pure force control is desired in some direction.

Potential stability problem arises since the coordinate transformation, either by
the Jacobian inverse or the Jacobian transpose, is directly in the feedback loop.

Hence, when considering the closed-loop stability of a cartesian force controlled

system, the effects of these matrices must be understood. The goal of this chapter
is to study stability problems that can be caused by kinematic transformations in

the feedback loop. In particular, it will be shown that the stiffness and the re-

solved acceleration methods do not become unstable for either revolute and polar

manipulators. However, due to its inherent control structure, the hybrid control
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method proposed by Raibert and Craig can cause instability on a revolute manip-

ulator regardless of the choice of gains. These instabilities occur not only at the

points of kinematic singularities, where the Jacobian inverses are not defined, but

at a wide range of the manipulator work space, where the Jacobian inverses are well

defined. This study includes both intuitive and rigorous analytical results as well

as experimental results with the direct drive arm to support the above claims.2

A planar two-link revolute manipulator (Figure 6.2) will be mainly used in the

analyses.
yf

L jq 1 X

Figure 6.2: Simple two-link planar manipulator

For this planar manipulator, the forward kinematics are

11C1 + 12 C12  where 81 = sin(8 1) and *12 =sin(e1 + 02 ). (6.6)
Y / 11181 +12812]

The Jacobian for the fixed cartesian coordinates is

The inverse Jacobian is

1_ 1 [1 2CI2  12812 (6.1[2 111282 -1 1c - 12c12 -1181 - 1212 (

9J-1 *

2The motivation for this chapter came from the author's observation of instability when the
hybrid controller was tried on the DDARM.
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For the lengths 1i and 12, I am using the lengths of the DDARM configured as a

two-link planar manipulator by locking the second joint and moving only the first

and the third joints.

11 = 0.462m, 12 = 0.445m

6.2 Intuitive Stability Analysis for Revolute Ma-

nipulators

Before a more rigorous treatment, it may be helpful to get an intuitive understand-

ing of why and how the instability occurs. The analysis presented in this section

is approximate and not mathematically rigorous. This analysis will reveal that

there indeed is a potential problem with the Raibert and Craig's hybrid approach

which uses the Jacobian inverse for coordinate transformations, but not with the

stiffness approach which uses the Jacobian transpose. Although the resolved accel-

eration method also uses the Jacobian inverse, its behavior is different because of

its dynamic compensation. Further discussion of the resolved acceleration method
is postponed until the next section.

6.2.1 Hybrid Control of Raibert and Craig

The equation for the hybrid controller (6.1) is repeated below.

T = KpJ-1 Sx + KJ-1 S*. + KJT(I- S)(fd - f) (6.9)

where

X, Xd X

S [ 0] or [00] or [10]0 1 0 1 0 0

The first S specifies position control in both the x and y directions. The second S

specifies position control only in the y direction and force control in the x direction, I
and the reverse for the third S.

Let's consider the cases when the manipulator is in free space and has no mass

at the end of the force sensor so that for any axis selected to be force controlled,
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the desired and the measured forces are O's. From the results of Chapter 5, this
situation is the most stable situation from the dynamic stability point of view. Also,

let's look only at the position component, since the velocity component is analogous.

Then,

T = KPJ-Sx, ; KJ-ISJ9, (6.10)

where 0, = Od - 0

Also, let K, = I > 0 for simplicity.

Case 1 LetS 0 1 0], i.e. position control in both z and y directions.

Then,

S- KJ-1 SJO, = 0, = Od - 0

In this case, the hybrid controller becomes a simple independent joint controller

and the system remains stable assuming that the control designer has designed a
stable joint coordinate control system.

Case 2 Let S = 0 , i.e. position control in y and force control in x.
[0 1]

Since the manipulator is assumed to be in free space, the z axis force is being
controlled to 0 force. With this selection matrix, position errors in the z direction
should not cause any restoring torques. Expanding the simplified hybrid controller

equation,

=r = J-ISJO, (6.11)
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Y

61 s~ 0
0< 02 < 90

X
hh01 O. = 0

92, > 0

Figure 6.3: Unstable configuration for hybrid control

Although 92. has both z and y components, the hybrid controller is being com-

manded to correct for the y-axis error only. Then, from (6.12), the restoring torques,

rT and r2, are

,-, = [ (12  12 )]92.

> 0

= -[ 1 (111 + 12s12)(2C1cu)]O,.
= - 00 ,,02)0.

= a( 1,0 2 )(0 2 - 02d)

< 0

For r2, the quantity inside the bracket, ci(0 1 , 02), is positive for the configuration
considered above. This is a positive feedback on Joint 2 and r2 < 0. Then, the

response for this hybrid control would be as shown in Figure 6.4. Since rT is posi-

tive and r2 is negative, the manipulator opens up and moves toward a singularity.

This movement will continue and eventually the manipulator will pass through a

singularity and become unstable.

Since the z-axis is being force controlled to f, = 0, and there is no restoring

force to the position error in the z-axis, this response seems to be an admissible

response if only looked from the point of view of cartesian coordinates. The restoring

torques are moving the manipulator to reduce the position error in the y direction

without any concern for position error in the z direction. However, in reality, this

is an unstable behavior since the manipulator is being pushed toward a singularity,

where the J-1 matrix is undefined.
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Figure 6.4: Response of the Hybrid Controller with S [0 1

6.2.2 Stiffness Control of Salisbury

The potential instability problem of the hybrid controller does not occur with the

stiffness control method of Salisbury. As before, let's look only at the position or

the stiffness component of the controller and assume that the manipulator is in free

space. Then the equation for the stiffness controller is,

i = JTKjJ(, - #) = JTKJ#.. (6.12)

Assuming that the stiffness matrix K is diagonal, the above equation is expanded

as

[J 12 J2 2  0 kO J21 J22 11.J (6.13)

k.2J21 + k1J221  k3 J11 J12 + k1J2 IJ 22  111
k2 J.IJ12 + ky.J 21J22  k1J,22 + kvJ22 1 [. J

The diagonal entries of the JTKJ matrix is always positive for positive stiffness

values. Let's consider the same configuration as before, where only the y-axis is
being position controlled,

K= [0 ]0  01 =0, 2.>0. (6.14)

1 III
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Y

J~ x

Figure 6.5: Response of the Stiffness Controller with S = [ 0]{0 01

From (6.14),

r = kyJ21 J22

= k1(lici + 12 c1 2) + 12C12

> 0
r"2 = k VJ2

> 0
Unlike the case of hybrid control, the r 2 component of the restoring torques is

positive, which is indicative of a negative feedback on Joint 2. Then, as shown

in Figure 6.5, since both T1 and r2 are positive, the manipulator corrects for the

error in y position correctly and stably without moving toward a singularity. This

stable behavior can be generalized by simple matrix operations for manipulators

with more than two joints and for other manipulator configurations and parts of

the workspace.

6.2.3 Summary of the intuitive analytical results

The analyses presented in this section suggest that the hybrid control method has

a potential instability problem related to the use of the Jacobian inverse in the co-

ordinate transformation. The Jacobian transpose in stiffness control does not seem

to create a similar problem. However, as stated at the beginning of this section,
the above simple analyses are only approximate. I treated the multivariable ma-

nipulator system as essentially SISO systems and looked at the responses due to an

error in only one component of the state vector. But a typical manipulator is a full
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MIMO system with the dynamics of each state coupled to one another. Therefore,

one needs to evaluate the closed-loop eigenvalues of the whole manipulator system

under different controllers for a more concrete stability analysis.

6.3 Root Loci, Simulations, and Experiments for

Revolute Manipulators

In this section, the intuition gained from the previous approximate analyses are

verified by eigenvalue computations, simulations, and experiments of a revolute

manipulator under different controllers. For computing the eigenvalues, since a

revolute manipulator is a nonlinear system, I can only study local stability by

linearizing the dynamics about some equilibrium points. The simulations, however,

are done using the full nonlinear dynamics. The experimental results are from the

implementations on the DDARM configured as a 2-link planar manipulator with

the second joint locked at 02 = 180*.

For a planar manipulator, the dynamics are given by,

1- = M(O)i + b(9, i) (6.15)

Assuming small velocities and linearizing the above equation about some 9 and

9 0, the resulting dynamic equation is

6, = M(0)6i. (6.16)

In state space form,

b* = 0 1I 6x+ [ jr, where 6x= [ (6.17)10 0 MO)-" I I

The inertia matrix M(8) of a simple 2-link revolute manipulator (Fig. 6.2) is

given in (Brady, et al.,1982).

[(9) = I + 12 + M 21 1 2 cOs 02 + IlM112 + M2 l1) + M212, 12 + 'M21'2 + IM2 11 2 COS0 21~e 4 1m11 2o 1042,
12 + -m 212 + 12 + im 21

The inertial parameters used in the analyses are the estimated inertial parameters

of the DDARM as presented in Chapter 3 after converting the 3-link parameters to
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those of the simple 2-link configuration.

I, =8.095 kg. m2

I2 =0.253 kg . m 2

m1=120.1 kg

m2 =2.104 kg

11 =0.462 m

12 =0.4445 m

6.3.1 Hybrid Control

Let's consider the stability of the simple manipulator under the hybrid control for

the same configurations as in Section 6.2.1. At first, let's consider the cases with the

robot in free space as before, which is the most dynamically stable configuration.

It will be shown later that contacts do not improve the kinematic instabilities.

In state space form, the hybrid controller can be written as

S6 = [ -K,J-ISJ, -K.J- 1 SJ] [ J. (6.18)6i

Then, the closed-loop system is described as

[ 6X

-M(O)_'KpJ 1 'SJ -M(d)_ 1 K.J_1 SJ
= A~x (6.19)

To guarantee local stability at the equilibrium points, the eigenvalues of the A

matrix must have negative real parts.

Case I S = [ 0]: Both the z and y axes are position controlled. The:::: 0 1

intuitive analysis showed that the hybrid control is stable in this case. The root

locus diagram (Fig. 6.6) shows the closed-loop eigenvalues of the hybrid controlled

manipulator as 02 varies from 100 to 90* and 01 = 00. As expected, the eigenvalues

are on the left hand side of the s-plane (LHP) and the manipulator is stable.

The simulation (Fig. 6.7) of this case also shows a stable behavior. The manip-
ulator is initially at (01, 02) = (0° , 700) and the desired point is given in cartesian

coordinates as (X, y) = (0.462 m, 0.4445 m). The gains are:

kp1 =2500, k,1 =300, kp= 400, kv2 = 30.
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Dp(1) (a)
rad a CARTESIAN

31 HYBID, Het. ST.1 .

2.; 0.35

JOINT 2

1.5 . O. SET POINT: (0.461 0.444 )

0.; 0.;

JOINT I
o.(0.8 u., o.2,5 0.3 1  05. W2 0-79 10

Figure 6.7: Simulation for the hybrid control with S = [0 O]

These gains are chosen reasonably and they approximately match the actual gains

used in the experiments.

In the experimental results shown in Figure 6.8, the geometric configuration
of the arm is 1800 rotated from the configuration shown on the simulation results

because it was more convenient for me to operate the robot in this configuration.

However, the dynamic behavior of the manipulator in either configuration is iden-

tical. The results on the direct drive arm also verify that this case is indeed stable

for the hybrid control. Figure 6.8 also shows the manipulator under the hybrid

controller executing a triangular trajectory, defined by straight lines between the

three corner points.

Case 2 S 0 0: The z-axis is force controlled to 0 force and the y- axisI 0 1

is position controlled. The root locus of this case for 01 = 0 and 02 varying from

900 to 700 is shown in Figure 6.9. Because one axis is being controlled to 0 force,

the behavior of the manipulator along that axis is that of a pure mass or a double

integrator. Therefore, two of the poles are at the origin, and only the remaining

two poles are shown to be varying. For 02 near 900, the system is stable and the
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0. 5O -0.-. -0.o
SET POINT: (-0.461, 4.4445)

-0. Z. -O.Z

!-1.
W"%

Figure 6.8: Experimental results for the hybrid control with S = 0

... [ 1

eigenvalues are negative. However, as 62 becomes smaller, the poles move into the

right half of the s-plane. The interaction of the inertia matrix M(9) with the J- 1

matrix is such that the eigenvalues of the A matrix of the equation (6.19) have

become positive.

In the above root locus, the manipulator was assumed to be in free space. Figure
6.10 shows the root locus for the manipulator in contact with a stiff wall (k =
10 N/m). Since the instability is generated by the interaction of the inertia matrix
and the Jacobian inverse, a manipulator in contact with its environment does not

solve this instability problem.

The simulations of this case with and without contact (Figs. 6.11 and 6.12)
show the expected unstable behaviors. The experimental result is shown in Figure
6.13 for the manipulator in free space. The manipulator is initially at (X,y) =
(-0.462 m, -0.4445m), which is a stable configuration according to the root locus

.A diagram. Then, with a very light force, I pulled the tip of the manipulator along the
-z direction, i.e. toward the more unstable configuration. Then, the manipulator
becomes unstable approximately at the point A of the figure, which corresponds to
02 = 750 in the coordinate system used in the root locus analyses and the simula-

tions. This point agrees well with the root locus diagram of the ideal manipulator,
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Figure 6.9: Root locus for the hybrid control with S = [
0 1
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Figure 6.10: Root locus for the hybrid control with S = and in contact

with a stiff wall (k, = I0' N/m)
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Figure 6.11: Simulation for the hybrid control with S 0=
0 0

(red a CARTESIAN
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Figure 6.12: Simulation for the hybrid control with S = and in contact

with a stiff wall (k. = i0 N/rn)
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.0 . .2 2"5 3.74 5.

-'. Figure 6.13: Experimental results for the hybrid control with S =~0 1

which shows that one of the poles becomes positive at 82 < 79.5° . Except for the

1800 rotation in the manipulator configuration from that used in the simulation,

the unstable behavior in the experiment corresponds very closely with the behavior

in the simulation. For the case of contact with environment, since instability is

predicted, I did not try the same experiment with the DDARM for fear of injuring

the robot and myself.

6.3.2 Resolved Acceleration Force Control

In state space form, the linearized resolved acceleration controller is written as

6r = [ - ()J-1SK 'J, -1()J-'SKJ][ 6 ] " (6.20)

MI(O) is the model of the actual inertia matrix M(6). Then, the closed-loop system

is described as

6* ~ e = -11 11) ]. bx. (6.21)6 = -(0)-M(O)J-ISK J  -M(0)- M(8)J-'SK 6. (.)
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If we assume perfect modelling so that 9I(1) = M(P), the closed-loop system be-

comes

-J-1 SKPJ -J-'SK,J

Ax. (6.22)

This A matrix can be decoupled as

Ao J~ ~ ][ oK , o;] (.3
0 j-1 -SP -SK.

- Q BQ. (6.23)

The above equation shows that the A matrix for the resolved acceleration is a

similarity transform of the stable matrix B consisting only of S, Kp, and K.. Since

the eigenvalues are preserved under any similarity transform, the eigenvalues of the

A matrix is simply given by the eigenvalues of B, which are designed to be stable

by the choices of Kp and K. matrices. Therefore, under perfect modelling, the

resolved acceleration control results in a stable system.

This is in contrast to the earlier intuitive analysis which seemed to suggest

that any method using the Jacobian inverses can lead to instability. However, as

I mentioned earlier, that analysis was only approximate, and it did not predict a

correct behavior for this case. Although the Jacobian inverse is still a problem at

kinematic singularities, at any other part of manipulator workspace, it does not

interact in any harmful way with the inertia matrix since the inertia matrix is

cancelled by the resolved acceleration controller.

The eigenvalues are plotted in Figure 6.14 for the resolved acceleration controller

with the following gains:
o iD  [40001 [400

S[OO K= 400 0 40]0 1I 0004
For this controller, the eigenvalues are negative and do not vary with the manipu-

lator configuration since the matrix B in (6.23) is independent of the manipulator

dynamics. This stability property is quite robust to the modelling errors. Even

when I added 50% errors in the inertial parameters, the eigenvalues remained in
the left half plane. However, if the modelling errors are very large, then the eigen-

values will eventually become positive. For example, if we model the inertia matrix
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Figure 6.14: Root locus for the resolved acceleration control with S 0
r0 [ 1

as the identity matrix, this reduces to the structure of the hybrid controller of Raib-

ert and Craig, and the system will become unstable. Therefore, accurate modelling

of the inertial terms of the manipulator is important in force control also as well

as in trajectory control. Since I only evaluated the stability for the cases when the

velocity and the gravity terms are O's, I cannot conclusively state how these terms

will affect kinematic stability.

Since the system is proven above to be stable, simulation results are not included

and only the experimental results are presented. Figure 6.15 shows the responses

when both axes are position controlled. The response is stable and for the same M

triangular trajectory as before, this controller follows the desired path much more

accurately than the hybrid controller. This is expected from the trajectory control

results of Chapter 4 since the controller structure includes the dynamics of the

manipulator. The response when the y-axis is position controlled and the x-axis is
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force controlled to 0 force is shown in Figure 6.16. The manipulator is stable and

as desired only corrects for the error in the y direction, ignoring the position error

in the z direction.

6.3.3 Stiffness Control

The stiffness controller is described in state space form as,

6r-[-jTKJ , -JTK J][ ]. " (6.24)

The closed-loop system is

-I _M(e)_jTKpj _M(e)_JTKj 6x
= Abx (6.25)

Since dynamics are not included in the controller structure, the inertia matrix is
not cancelled, and it is not obvious from the form of the A matrix what the stability

characteristics should be. Therefore, I will follow the similar steps of analysis as in
the study of the hybrid controller.

Case I K [ 2000 0]: The root locus (Fig. 6.17) for this case shows

that the eigenvalues are always negative and the system .s stable. Simulation results

are not interesting since the system is stable and are not included. The experimental
results for this case are shown in Figure 6.18. Since dynamics are not included,
the stiffness controller performs poorly in following the triangular path. Yet, the

response is always stable.

Cas= [ K 2000: The root locus (Fig. 6.19) shows that this case is

also stable as predicted by the intuitive analysis. The experimental results shown

in Figure 6.20 also verifies the stable property of this method.
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Figure 6.18: Experimental results for the stiffness control with
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6.4 Stability for Polar Manipulators

All of the analyses so far have used revolute manipulators, and it was shown that the

hybrid control method produces an unstable system for these types of manipulators.

This result, however, is not true for polar manipulators. Let's consider a simple

planar polar manipulator (Fig. 6.21) as described in (Lozano-Perez, 1983).

The direct kinematic relationships of such a manipulator are:

[ X d2 Cose 81 (6.26)
I d2sin 01 ]

The Jacobian relationship is:

1;] -d2 sin 01 Cos 01 1  (6.27)
S = d2 cos0 1  sin e 1  d 2 ]

The inverse Jacobian relationship is:

[ 1 _ 1 [ sine01  - Cose 81 [1(8
2 - d2  -d 2 cos 01 -d 2 sin 0J (
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F e : Figure 6.21: Simple planar polar manipulator
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The dynamics are:

Ir ( 2 -1) M2 0 i2 I+ I2(d 2 - 1L 2)mla2 i
*.I J2j rnT 0 -(d 2 - 12 )m 2d (6.29)

Intuitive Analysis Following the intuitive analysis for the revolute manipu-

lators, whenS
01~ I''

T = KPJ-'SJq.

1 2CS 1 cs0 i 1 r 1= 2 d sin 91 cos 01 d2 sin2 a1 d (6.30)
d~~cosI9, co: IiG 91 I..N

The diagonal elements of the above gain matrix are always positive, resulting in

stable negative feedbacks if, as before, the nonlinear coupled system were to be

approximated as two independent SISO systems. Therefore, we would expect the

polar manipulators not to exhibit kinematic instabilities under the hybrid control.

Root locus and Simulations The stability analysis of a polar manipulator

is studied further by linearizing the dynamics about some equilibrium points as

before. In order to be consistent with the results of Raibert and Craig (1981), the

kinematic, the dynamic, and the control parameters reported in their study are used

for evaluating the hybrid controller by root locus and simulations The root locus

with the above S matrix is shown in Figure 6.22 as d2 varies from 0.05 m to 0.6 m.

The two non-zero eigenvalues are always negative in this case. The simulation shown

in Figure 6.23 also demonstrates a stable behavior. ,

These results on a polar manipulator verify the stable results reported by Raibert

and Craig in their pioneering implementation of hybrid control on the Stanford Arm,

which is a polar manipulator. Large friction in their manipulator may have also

added stability to their implementations.

6.5 Conclusion on Kinematic Stability

The kinematic instabilities are very dependent on the geometric configuration of

and on the types of a manipulator. The hybrid controller of Raibert and Craig

produces an urstable system when implemented on a revolute manipulator. The
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Figure 6.23: Simulation results for the hybrid control on a polar manipulator with

0 1"

same controller results in a stable system on a polar manipulator. On the other

hand, the stiffness and the resolved acceleration methods always produce stable

results. The stiffness method is stable because it uses the Jacobian transpose for '4

coordinate transformations, and the resolved acceleration method is stable because

the inertia matrix is included in the controller. For cartesian trajectory following,

the best performance was obtained with the resolved acceleration controller since its

inverse dynamics compensation decouples the motion of the tip of the manipulator

in cartesian directions.
'.
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Chapter 7

Force Control Experiments on the
Direct Drive Arm

.- In Chapter 5, one-link force control experiments were included in order to

demonstrate the issues of dynamic stability. In Chapter 6, since I wanted to isolate

the kinematic instabilities from the dynamic instabilities, the experiments involved

force controllers for a multi-link manipulator operating in free space without any

interaction with the environment. This chapter verifies the stability analysis results

of the two previous chapters by presenting results of stable force controller imple-

mentations on a multi-link manipulator against a stiff environment. As in Chapter

6, the second joint was locked at 02 = 1800 and the first and the third joints were
controlled to operate the arm in a planar configuration. For all of the experimental

results in this chapter, the environment was always a stiff aluminum surface.

?- 7.1 Experimental Setup

The resolved acceleration method, which was shown to be kinematically stable for

any manipulator in any configuration, was implemented on the two links of the

J. direct drive arm to control both the position and the interaction force with its

environment. The implementation also utilized the dynamic stability results of

Chapter 5 by using both joint torque control and dominant pole compensated wrist

force feedback. The block diagram shown on Figure 7.1 and the equation below
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X1 q
J

d KP> q

I-S F

Figure 7.1: The structure of the resolved acceleration force/position controller for

the DDARM

describe the general structure of the controller.

r = A(){M(q)J-(q)[Sx4-h(q, l)]+b(q, l)+g(q)+J'(l-S)Kf ( (f-f)}

(7.1)

XL = Rd + K, (*d - *) + KP(Xd - x)

A(s) is the filter representing the torque servo loop at each joint and K 1 is the wrist

force sensor feedback gain matrix.

Joints 1 and 3 have torque inner loops, operating at 500Hz, and the outer loops

of both force and position operating at 100Hz. Actually for Joint 1, the inner loop

is really the analog current loop, to which the torque set points are commanded

at 500Hz sampling intervals. An additional explicit torque servo mentioned in

Chapter 5 was not necessary for this joint since the commanded and the measured

torques matched quite well. However, since the match was not as good for the

third joint, it has an explicit torque feedback in addition to the current feedback

in order to reduce some of the undesirable nonlinear effects at the amplifier/motor

circuitry. The wrist force sensor feedback was also included in order to increase

the steady state force accuracy at the tip of the manipulator. But as discussed in

Chapter 5, to ;nsure stability by creating a dominant pole, the force sensor signal

is processed through a low pass filter, whose pole is at 1Hz. As before, the Barry
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Wright FS6-120A 6-axis force/torque sensor is used as the wrist force sensor.

The same three types of inputs used in the single joint experiments were also

used in the multi-link experiments. They are:

1. square wave force in the z-axis and constant position in the y-axis,

2. sine wave force in the z-axis and constant position in the y-axis, and

3. constant position in the y-axis and constant force in the z-axis in presence of

the lateral movement of an eccentric cam (Fig. 5.20).

As before, the measured force data from the wrist force sensor are plotted without

any low-pass filtering of the signal.

The control parameters used in the experiments are summarized below:

[f 0.444 0 1
K1'= 0 0.444]

K r = 1 0 1
K 0 160]

K 1 0 21

10 001
Force Filter Pole 1 Hz

The force gain is set relativet!y low since the main dynamic performance should

come from the joint torque control part.

7.2 Experimental Results

7.2.1 Square Wave Force Input

Using the resolved acceleration method, the x-axis is force controlled with the square

wave inputs of 10 N and 15 N, and the y-axis is position controlled to be stationary

at y = -0.669m. Figure 7.2 shows a stable and fast step response. Response H
time, i.e., the delay plus the rise time is approximately 20ms. Also, there is very
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little coupling of the two axes, as verified by the trace of the error in y position.

Except for some bias position error, due to the deadzones in the motors and also

probably due to the roundoff errors in the computations, there is very little change

in y position as force steps are commanded along the z-axis.

For the purpose of comparison, the performance of the resolved acceleration force

controller without the wrist force sensor feedback is shown in Figure 7.3. Although

the dynamic charateristics of the step response is similar to the one with the wrist

force sensor, the steady state accuracy has deteriorated. This result agrees with the

result of the one joint experiments (Fig. 5.17) of Chapter 5.

7.2.2 Sine Wave Force Input

Sine wave force response is used as a measure of bandwidth for the force controlled

system. As in the step response experiments, the y-axis is position controlled to be

stationary at y = -0.669 m, and the z-axis is force controlled with the sine wave

inputs of

fcommand. (N) = 12.5 + 2.5 sin(wt)

The force and position responses to the 1Hz sine force input are shown in Figure

7.4. Both the force and the position traces have some offset errors, but the controller

performs well dynamically. However, the manipulator did not respond as well to

higher frequency inputs, although the one joint experiments showed good responses

up to 20Hz inputs. This lower bandwidth is due to lower sampling frequencies

(100 Hz outer force loop vs. 500 Hz) and less rigidity in the manipulator structure

caused by the flexibilities at the joints connecting the links.

7.2.3 Following the Eccentric Cam

The manipulator is commanded to exert a constant force of 12.5 N against the

surface of the eccentric cam (Fig. 5.20) in the z-axis and stay stationary in the y-axis

at y = -0.669m. As the cam turns, it produces a varying positional disturbance

whose shape is approximately that of a sine wave.

The performance under these conditions is shown in Figure 7.5 for the same cam

speed used for the one joint experiment. The plot of the x-axis position shows move-

ments of the the manipulator in the x direction, while maintaining a constant force

136



901.0 2.0 3 0 4.0
80G

10 magnified

800.1 0.2 0.3 0.4
eec

FORCE and TORQUE SENSING: X-AXIS STEP FORCE

0.0

0 12 3 4
88G

Y-AXIS POSITION CONTROL

Figure 7.2: Resolved acceleration: x-ax,.s=force steps, l,-axis=constant position
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Figure 7.3: Resolved acceleration without wrist force sensing: z-axis=force steps,

y-axis=constant position
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Figure 7.4: Resolved acceleration: x-axis=lHz sine wave force, y-axis=constant

position

against the moving cam. The position trace in the y-axis shows that the resolved

acceleration controller is able to maintain constant y position while following the

cam in the z direction. Disregarding the high frequency noise, the variation of the

measured force is slightly larger than the 10% limit that I defined as a disturbance

rejection measure. Therefore, the frequency limit of the two link system measured

in this way is slightly lower than 0.8 Hz, which was the limit of the one joint system.

7.3 Some Results with Stiffness Control

The stiffness method by Salisbury (1980) was also implemented on the direct drive

arm in order to compare its performance against the resolved acceleration method

while the manipulator is in contact with its environment. The gains for this con-

troller were: K 0 0 K 0 0
P 0 400 0 40
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Figure 7.5: Resolved acceleration: x-axis= 12.5 N force and positional disturbance,
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Figure 7.6: Stiffness Control: x-axis=force steps, y-axis=constant position

The stiffness in the z-axis is set to 0 so that pure force can be controlled in this

direction in a similar way as the resolved acceleration method. This is one of two

modes of operation for the stiffness control. For the other mode, one should set the

stiffness in the x-axis to some desired value and then command a position set point

beyond the contact surface. Since only one mode is evaluated, the comparisons in

this section may not be the fairest.

As before, the manipulator is commanded to maintain constant y position, and

square wave and sine wave force commands are given along z-axis. The results are

presented in Figures 7.6 and 7.7. Although the dynamic force responses are slightly

different from the results of the resolved acceleration, the main differences are that

there are significant movements in the y direction with the stiffness control. Since

the manipulator dynamics are not included in the stiffness control, the coupling

between the two axes are much more severe in this case. The results of experi-

ments using the cam positional disturbance are not presented because the stiffness

controller could not keep the manipulator tip on the cam surface. The undesirable

movement in the y direction was greater than the width of the cam.
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Chapter 8

Conclusion and Future Research

8.1 Conclusion

There are two themes that are present throughout this thesis. One is the importance

of accurate modelling of the manipulator system to be controlled and the second
is the importance of experiments. Accurate modelling of a manipulator, either by
estimation or by other methods, is important for both trajectory and force control.
Experiments can not only verify theoretical results but also give new insights into
the problems. For example, through the implementation results, I discovered that
some of the link inertial parameters cannot be estimated and also that they do
not affect joint torques. Chapter 6 on kinematic stability was motivated by my

initial observation of instability when I tried to implement hybrid control on the
DDARM. These issues were not apparent at first before the experiments. Therefore,
these two ingredients, modelling and experiments, are essential in designing a high
performance controller for a manipulator. Actually, they are important for designing

a controller for any system.

Following those themes, the work presented in this thesis tried to address some
* of the problems in the area of robot control using the high performance MIT Se-

rial Link Direct Drive Arm as the main experimental device. First, the issues of

estimation of the dynamic models of a manipulator and its loads were studied since
accurate modelling is the first step in any control design. Using the algorithms
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presented, the inertial parameters of a manipulator and its loads were estimated

very accurately. The estimated dynamic model was then used in evaluating sev-
eral well known trajectory control algorithms on the DDARM. The experimental

evaluations showed that the manipulator exhibits significantly improved trajectory
following accuracy when its controller uses dynamic compensation.

The issues of force control of a manipulator were addressed next. The study
started with a very simple model of a manipulator in order to understand some of
the dynamic instability problems that occur when a manipulator interacts with a
stiff environment. After understanding the stability problems, several methods of
improving the stability were suggested and evaluated. It was shown both analyt-
ically and experimentally that there are also kinematic instability problems that
can occur even when the manipulator is in free space. The problems are caused by
the interaction of the inertia matrix with the Jacobian inverses used for kinematic

coordinate transformations. However, the kinematic instabilities disappear when an

accurate dynamic compensation of the manipulator is included in the feedback path
by the resolved acceleration algorithm. This, then, brings us back to the importance

of estimating the inertial parameters of a manipulator accurately.

8.2 Future Research

The work of this thesis is only the beginning of growing interests in high performance

robot manipulation. I tried to address only some of the more imminent problems

as accurate trajectory following and force control stability. There are vast numbers

of difficult problems that have to be answered in the future, and many researchers

have already begun addressing them. Three problems that are directly related to
this thesis work are discussed below.

8.2.1 Manipulator

Conventional highly geared robots can be used successfully for applications that
do not require high performance. It is not able to produce accurate high speed
movements, nor interact with environments stably. Direct drive arms are high

performance robots that eliminated or reduced many of the problems with the

conventional robots. For the next several years, because of their speed, power, and

144



almost ideal dynamic characteristics, they will continue to provide researchers with

many new opportunities to study effectively various topics such as trajectory control,

force control, robot learning, and hand eye coordination. However, as I discussed

in Chapter 1, they also have many shortcomings. It is, therefore, necessary to

consider new approaches to high performance manipulator design. One of the new

approaches is a lightweight flexible arm (Book, 1984; Cannon and Schmitz, 1984).

This technology embodies a completely opposite philosophy from the technology of

a heavy and rigid direct drive arm. Another very exciting approach is a light but

rigid tendon driven arm. Recently, this approach was demonstrated successfully in

designing multi-fingered robot hands (Salisbury, 1982; Jacobsen et al., 1986).

8.2.2 Collision

In my study of force control, I avoided the issues of collision that occurs at the

initial contact phase. Especially for heavy manipulators, even at low speeds, the

impact forces may be very large such that the environment and also the manipulator

itself are damaged. During the force control experiments that I performed, although

the manipulator remained stable, the impact forces were typically greater than 400%

of the commanded force levels (Fig. 8.1).

Featherstone (1984) developed a dynamic model of impact between a robot and

its environment for simulation purposes. Khatib and Burdick (1986) introduced a

transition phase of pure damping control to reduce the impact forces at collision. As

discussed in Chapter 5, adding a compliant skin to the end effector will also reduce

the impact forces. Redundant degrees of freedom may also be used effectively

in handling collision. As humans bend knees when, for example, jumping down

from a high platform, the robot can configure the redundant links so that they are

compliant in the direction of collision and also transfer its momentum to other parts

of the manipulator structure.

8.2.3 Fundamental Concepts of Compliant Behavior

A very important and difficult problem that needs to be answered in order to

improve significantly the compliance capability of a manipulator is the fundamental

behavior we want the robot to have in interacting with its uncertain environment.

It is not clear whether we want the manipulator to behave as a spring (Salisbury,
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Figure 8.1: Responses at collision

146 '



1980), a damper (Whitney, 1977), an impedance (Hogan, 1985a, 1985b, 1985c), or

a hybrid of pure position/force source (Raibert and Craig, 1981, Khatib, 1983). It

may be that none of the above approaches is the best one, and a completely different

behavior is desired.
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Appendices

Appendix 1: Closed Form Dynamics

The customized closed form equations of the dynamics of the MIT Serial Link Direct

Drive Arm are presented in this appendix. To simplify the equations, the following
notation is used:

82 = sin12 , s = sin03 , c2 = cos 02, cs = cos 03.

Also, g = 9.80665 rn/sec2. The closed form equations are:

ni SP 4 (j 1) + SP5(0A 2 C2  2 i~ + I5 Y2 (2j 1 S2 C2 - 20102 + 400 2c 2
.> +I,2(02S2 + v 2 2) + SP,(02c2 - v2s 2)

+msc,, (12 ) (2j 1 ss + 202038283 - j 3S3C2 + 20103C3 - i 282C3 - vC 2C3 -vC 2C3)

±rn 3 1 2)(j 2S2S3 -2010383 +vS 3C2 + vS~C2 + 201 c3 + 2i0 2sC 3 - 63C2C3)
+SP 2 (01c2 - 01 - 0203S2 - 20,0 2s2c2 - 20100 3 3c + 0282ssc 3

+v2S 3C2C3 + 20103st Cc3 + 31  + 2i 2 3c + 2010282C2C3C3 -0Cc 3C3)
. - 022 - v 2 - 20 3c2 - 2jjs 3c3 - 40sss 3c3

-401 02 82 83 W~3 + 2jS3c 2_ - 40103c 3+ 2i 2S2 3 + 2i 2  3~c + 401 0sc 2 3c)

+I.., (020288S3 - VS283 - 028s 3 C2 + 20103ss 3c2 + 20102c3 + 03s2cS - 20Is2c 2 c3

-4iA 2C,3)

±IY33(2 1 .s 2S3C2 - 2010283 - 038283 + 40102st + v2S 2C3  35~.2C3 - 2c2C3

+1,,, (i~0382 - 932- 201 02C 2 +
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n2= M2 Cz2 (gC2 ) + SP6(g9s 2 ) - SP5,(v~js 2 c2) + I.,(, - 2v4c2) + 13(12

+SPi( 1C2 ) + SP 3(92 ) + M 3z(gc2 C3 - 10c3) + msc,3(1 2 3~3 - gs80 2)

±SP2(1 d1S2 C2 - 0i03s2 + 2i02 sc 3 + i0828 3  - 0242 + 2010382C3 - i 1 82C2 C2)

+1 3(2j 2S3C3 - 2020 - 0182 - 4010382s8 3 + 2v?2 2 C2C + 4i23 + 2018242)
- 01s$c 2 - V12C 3 + V3C3 - 2iJ01 3 c3 + Wd~4s

+I,3(V2S3- V32 3 + 2i010.~ 2 - 2018 3C2 + i 3C3 - i 1C0c3)

+I, 8 (V 2 C2 - il0432)

n3 = Ms 3x(-gs2ss3 - 126183C2 - 12V2C3) + MsCy8 (12v0s-8 1~3 - 2C3)

+0P 2 (M1 2 82 + V1303s - V2233CS - V1,80Cs4 - 2002822)

2- v12 + v?4c2 + 4010282e8 3 + 2t41 - 2vc.2 - 2v1C)

+I, 8 (0 2Cs - 018233 - 20,0 283C2 - V13 2COcs)

+I..(i3 + M1232 - 90 2)

In these equations, there are 15 reduced inertial parameters: m 2 Cx 2 , 'ZV2) '3321

m 3C33 M3 C~i IZ3 31 23w ISS3 SPI, SP 2, SP3, SP4, SPs, SPs. The SP, variables

are abbreviations for the following linear combinations:

SPI=M3 C..12 + Ivft

SP2 =1 22 , - 41,8

SP3=I,5 2 + 1333
SP 4=I, + '332 + 1333 + M312

SP 5 13 -- l + 1--I - 41,V2

SP 6=M3C5 3 - 2v

Eleven inertial parameters do not appear in these equations at all, and are corn-

pletely unidentifiable: in1 , m1c11, mj 1 ,1, mtc5 ,t ix, 1X1 Ixj 4,,~j1 II in2 , MOW12
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Appendix 2: Stability Robustness

Figure A.1: Nominal SISO system

This appendix is a summary of the discussion in Lehtomaki (1982) on the stabil-

ity robustness using the Nyquist criterion for a single input single output (SISO)

system,

Let's consider a SISO system described in Figure A.1 with nominal loop transfer

function G(s). If we have a modelling error, the actual loop transfer function is

represented as the perturbed 6(s). The stability robustness is determined by the

distance that the Nyquist plot of G(s) avoids the (-1 ,0) point in the complex plane

(Fig. A.2). The situation in Figure A.2 shows that if the nominal closed-loop

system with G(s) were stable, then the perturbed system with 5(s) would also be

stable since the number of encirclements of the (-1, 0) point has not changed.

For any w, the distance between the (-1, 0) point and G(jw) is given by

d(w) = 11 + G(jw)I, (A.1)

and the distance between G(jw) and G(jw) is,

p(w) = IG(iJ) - G(jw)l. (A.2)

Then, from the Nyquist plot, it is clear that the perturbed closed-loop system is

stable if

I' + G(w)I > I&(jw) - G(jW)I. (A.3)

If we define the modelling error as in Figure 5.2, then

G(s) = (1 + E(s))G(s)
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Figure A.2: Nyquist plot of the nominal and the perturbed (actual) system

and
E~) (a) - G(s)

E(.) =G(s)

The relation for stability robustness is obtained for this error model by dividing

(A.3) by G(jw):

1 + G(jw) 11 + G-(wj>((jw) - G(jw) - E(iw)I. (A.4)
G(jw) G(wJG(jw)



Appendix 3: Adaptive Observer

The new plant equation (5.20) can be derived from the original equation (5.18) in

* the following way. This derivation is slightly simpler than the method presented

by Narendra and Kudva (1974). (5.18) and the filter equations (5.19) are repeated

* below:

.1Df. h X + Oi3X + fRxE (5.18)

=-Ay + XE, wb= -Aw +f. (5.19)

The above equations can be written in the frequency domain as,

Df. (a) = (a' + 0.9 + 0l)zg-(9) (A.5)

Then by substituting (A.6) into (A.5), D(+Aws)(A7

(a 2 + #as + fl)(s + A)y(8)= s+Xws)(A7

Cancelling (a + A) from both sides of (A.7), we get

8 ~ + P3s + fl)hy(s) = Dw (s). (A.8)

Since sy(s) = xE(S) - Ay(s) from (A.6), we can substitute for sy(s) in (A.8) so that,

XEr(S) = -3xE(s) - fly(s) + Dw(s) +XE(s) + A(#3 - A)y(.s) (A.9)

In time domain, (A.9) is the desired equation (5.20):

XE = -IixE - flyi + Dw + AXE + A(,8 - A)y (5.20)
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Appendix 4: Operational Space and Resolved Ac-

celeration

In the reports by Khatib (Khatib, 1983; Khatib and Burdick, 1986), the dynamics

of a manipulator in operational space or end effector cartesian space are described

by

A(x)5c + p(x, *) + p(x)=f.[1

In joint coordinate system, the same dynamics are described by

M(q) ?I + b (q, ij) + g(q) = .(A.10)

M(q) and A(x) are related by

M(q) = JT (q)A(x)J(q) [31

or

J-T(q)M(q)J-i(q) = A(x) = A(q). (A.11)

Also, the operational space force vector f and the joint torque vector r are related

by =J T (q)f. [4]

For a decoupled end effector motion commanded by f,,

,r = JT(q)A(q)f + J11(x,k) +JTp(x)[7
= jT(q)A(q)f;+f,(q,4) +g(q).

where

b 4~) = b(q,qi) - J'A(q)h(q, 4), [8]

h(q,4) = j(q)4. [9]

Typically, for position or trajectory control, a linear second order behavior is com-

manded so that

f= :Rd + K,(kd - k) + Kp(Xd - X) (A.12)

'In this appendix, the equation numbers in brackets refer to the equation numbers in (Khatib

and Burdick, 1986)
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Then, for a hybrid force/position control, the joint command vector with the oper-

ational space method is

= J T(q) [A(q)Sfl + (I - S)f*] + b(q, 4) + g(q) [18]

where f. is the command vector for force control.

Substituting (A.11) and [8] into [18],

JT(q)J-T(q)M(q)J-(q)Sf, + b(q, 4) - JTj-T(q)M(q)J-l(q)h(q, 4) +

g(q) + J T (q)(I - S)f. (A.13)

Simplifying the above equation,

T = M(q)J-(q)[Sf, - h(q, 4)] + b(q, 4) + g(q) + J T (q)(I - S)1. (A.14)

This equation is identical to the equation (6.2) for the modified resolved acceleration

controller presented in Chapters 6 and 7.
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